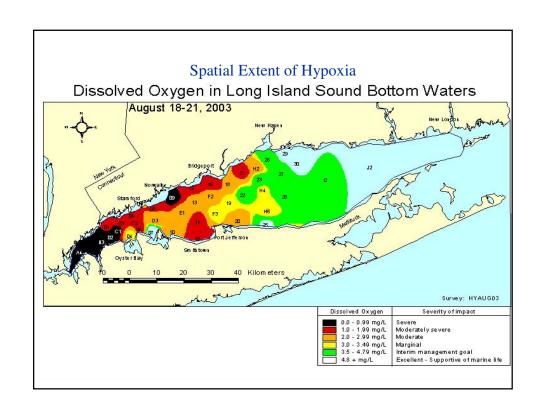

Applying the System Wide Eutrophication Model (SWEM) for a Preliminary Quantitative Evaluation of Biomass

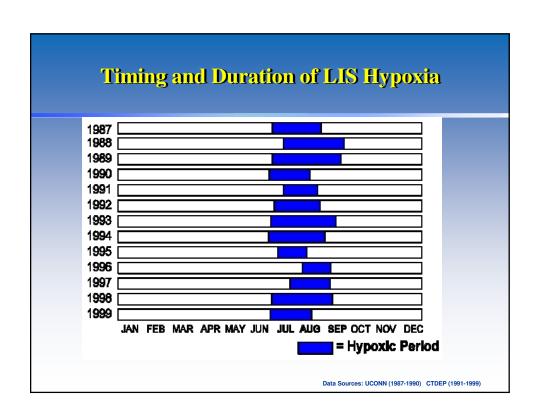
Harvesting as a Nutrient Control Strategy for Long Island Sound

International Workshop on Bioextractive Technologies for Nutrient Remediation Robin Landeck Miller December 3-4, 2009

Hydro@ual

201 • 529 • 5151 www.hydroqual.com

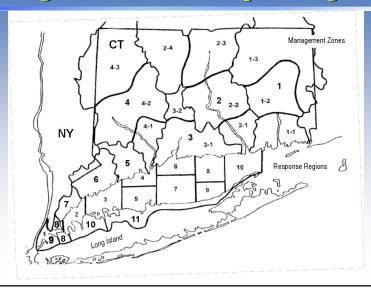

Presentation Goals


Long Island Sound Issues

- Hypoxia
- Existing LIS N TMDL
- DO Standards & TMDL Compliance

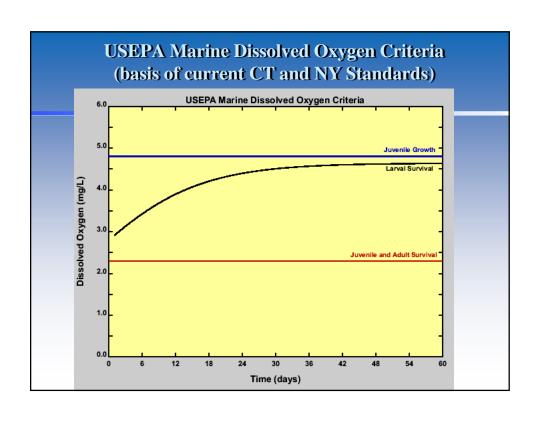
Numerical Modeling

- Overview of SWEM
- Refinements to SWEM for Biomass Harvesting Evaluation
- Results for Biomass Harvesting vs. Additional Treatment Options
- Needed Next Steps

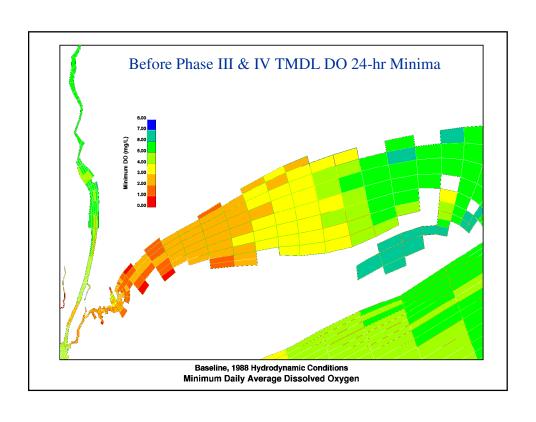

Long Island Sound TMDL Water Quality Modeling

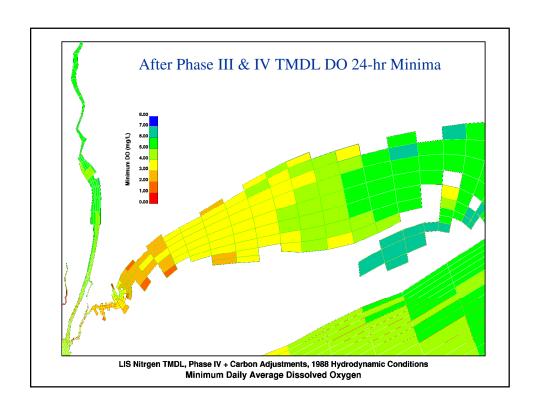
- Modeling Work Began in 1987
 Water Quality HydroQual
 Hydrodynamics NOAA/HydroQual
- Four Generations of Water Quality Models
 - LIS1.0 2 Dimensional/Steady-State
 - LIS2.0 2 Dimensional/Time-Varying
 - LIS3.0 3 Dimensional/Time-Varying
 - SWEM 3 Dimensional/Time-Varying/Regional

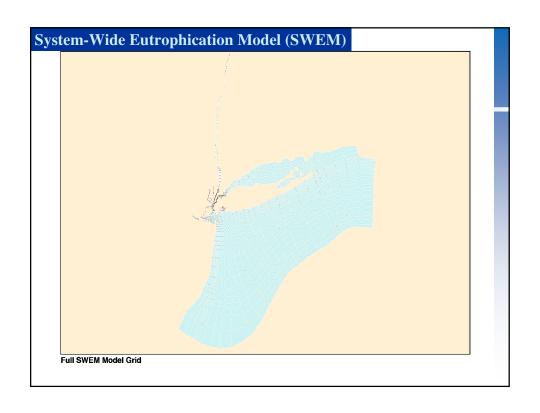
Objective: Effect of Carbon and Nitrogen Inputs on Dissolved Oxygen Balance

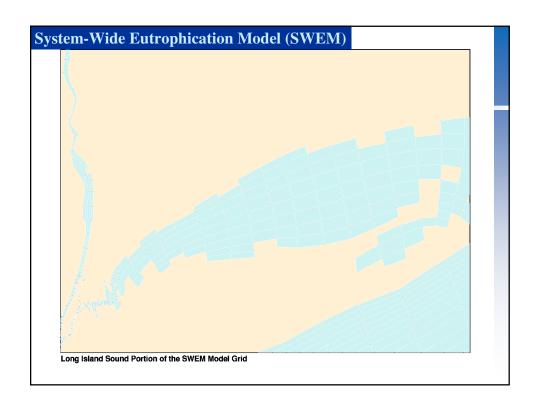

Management Zones and Response Regions

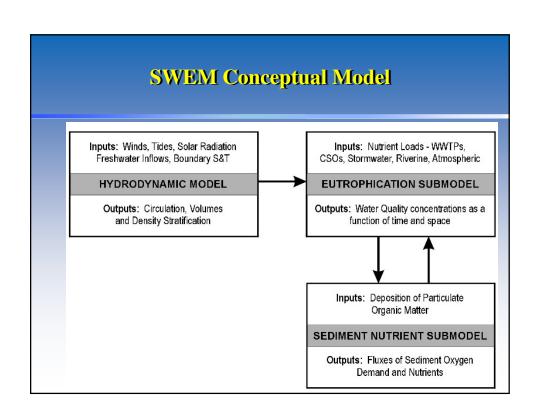
December 2000 Phase III and IV N TMDL Requirements

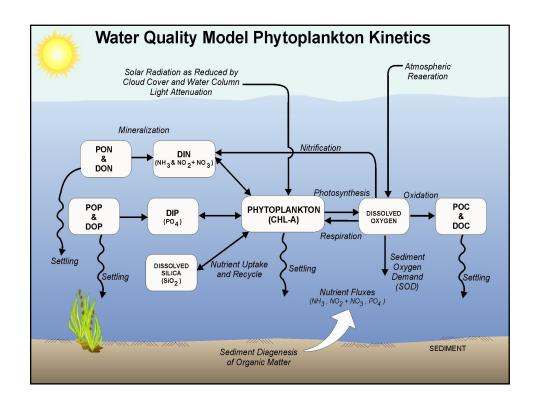

- 60% reduction to in-basin point source nitrogen
- 25% reduction to out-of-basin point source nitrogen
- 18% reduction to atmospheric nitrogen deposition
- 10% reduction to out-of-basin nonpoint source nitrogen
- 5.4% reduction to in-basin nonpoint source nitrogen
- Variable% concomitant TOC reductions


TMDL ENDPOINTS				
Dissolved Oxygen	Federal marine DO criteria			
Targets	CT marine DO standards			
	New NY marine DO standards			
	Previous NY marine DO standards			
Resource Targets	DO volume - days - % mortality			
	DO volume - days - % biomass reduction			




CT & NY DO Standards for Long Island Sound


TYPE	СТ	NY
above pycnocline	never < 6.0 mg/L	NA
acute	never < 3.5 mg/L below pycnocline	never < 3.0 mg/L full depth
chronic	3.5 to 4.8 mg/L: 3.5–3.8 mg/L 5 days 3.8–4.3 mg/L 11 days 4.3– 4.8 mg/L 21 days below pycnocline	3.0 to 4.8 mg/L: Days set in 0.1 mg/L increments with new cohorts every 66 days full depth

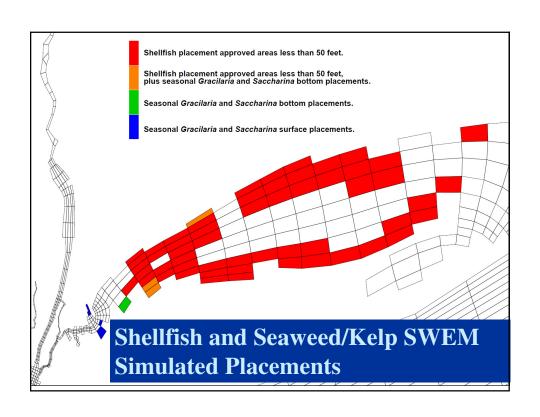


Representing Shellfish Functioning in SWEM

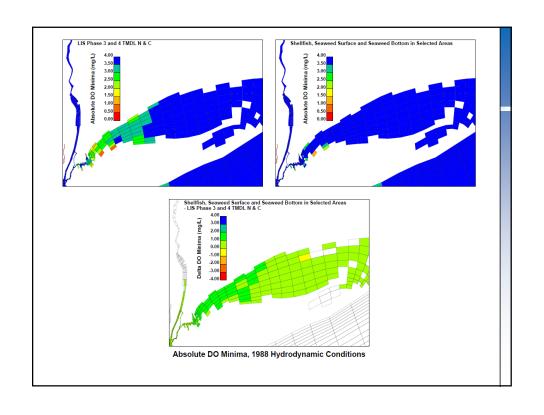
 SWEM settling terms for PON, POP, phytoplankton, & POC increased based on shellfish biomass density and filtering rate

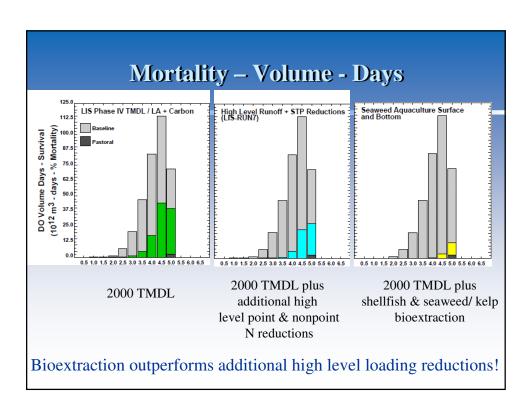
Filtering rate = 0.033 m^{3/g¹} shellfish C/d¹ at 20°C; lower than CBEMP oyster modeling

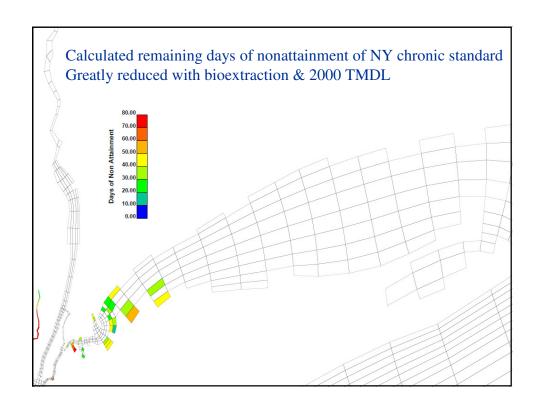
Biomass density = 500 g C/m^{2 A}


- SWEM assumes material filtered by shellfish is 75% assimilated and 25% released to sediment bed and recycled^B
- SWEM assumes assimilated material is removed when shellfish are harvested

Representing Seaweed/Kelp in SWEM


- Loss term added to SWEM for seaweed/kelp uptake of dissolved inorganic nutrients
- Loss term based on expected seaweed/kelp density and literature stoichiometry (5% N, 1%P)^{C,D}
- Near bottom (2000 g DW m²) and suspended long-line (300 g DW m²) systems simulated
- Saccharina (formerly Laminaria) (September -May) and Gracilaria (May – November) target species


Shellfish & Seaweed/Kelp Placement in SWEM


- Shellfish placement restricted to currently approved waters
- Placements restricted to depths less than 50 ft
- Seaweed/kelp placement constrained by available light – 300 uE/m²/s reaching 6 ft above bottom at least 70% of time during daylight hours

SWEM				
	LIS Surface Area (km²)	LIS Surface Area (~ football fields)		
Shellfish	606.2	113,274		
Seaweed/kelp Near bottom	22.7	4242		
Seaweed/kelp Long-lines	10.3	1923		

Conclusions

- Shellfish and seaweed/kelp bioextractive technologies are promising alternatives for DO management in LIS.
- Preliminary SWEM quantitative & realistic evaluation successful in demonstrating bioextractive potential.
- Implementation of shellfish and seaweed/kelp bioextractive technologies is LIS should lead to up to 2 mg/L improvement in DO minima, reductions in living marine resources impairments & full attainment of NY chronic criteria in LIS Response Regions 3 – 10
- Further evaluation warranted

Room for Improving the Analysis

- Incorporation of more robust/mechanistic shellfish model into SWEM (e.g., CBEMP). Include multiple shellfish species, particle concentration & previous filtration dependencies on filtration rate, growth, respiration & mortality effects, etc.
- Development of mechanistic seaweed/kelp kinetics in SWEM. Detail analogous to SWEM phytoplankton modeling. Include growth, decomposition, etc.
- Revisit conservative assumptions (e.g. 10% fraction dry weight for Saccharina and Gracilaria, shellfish filtration rate, etc.)

Footnotes

- AShellfish density based on Newell 1990 as cited in Newell 1998 for a harvest upper limit for a productive bottom mussel site in Maine
- BRates of shellfish assimilation efficiency based on Tenore and Dunstan 1973; Valente and Epifanio 1981; Langefoss and Maurer 1975 as cited in Powell et al. 1992 and Cerco and Noel 2007; and Newell et al. 1998.
- ^cStoichiometry for seaweed/kelp based on Gerard 1992, Merrill et al. 1992, He et al. 2008, Carmona et al. 2006, Chung et al. 2002, Kim et al. 2007.
- Density for seaweed/kelp near bottom systems based on Buck and Buchholz 2004 and Egan and Yarish 1990 in Merrill et al.1992.
 Density for seaweed/kelp long-line systems based on Duarte et al. 2003.

Technical report with full citations to be submitted to EPA LISS

Acknowledgements

- Many colleagues at HydroQual
- Mark Tedesco
- Charles Yarish
- Gary Wikfors