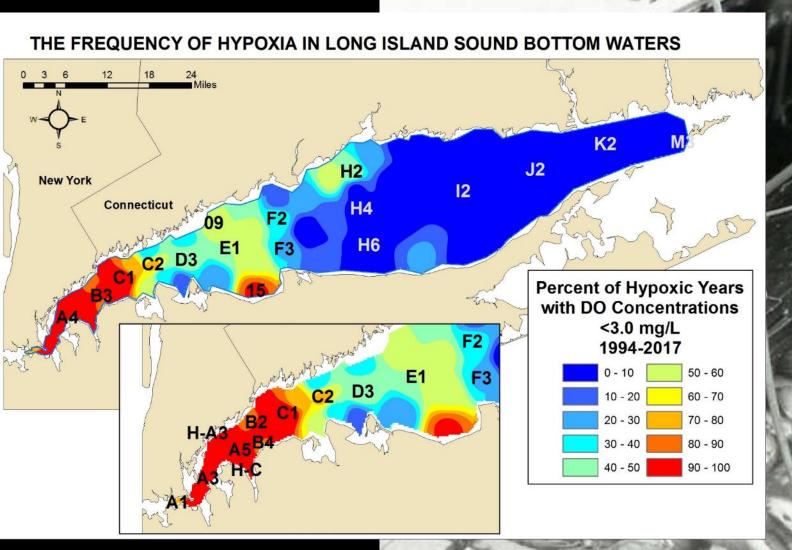
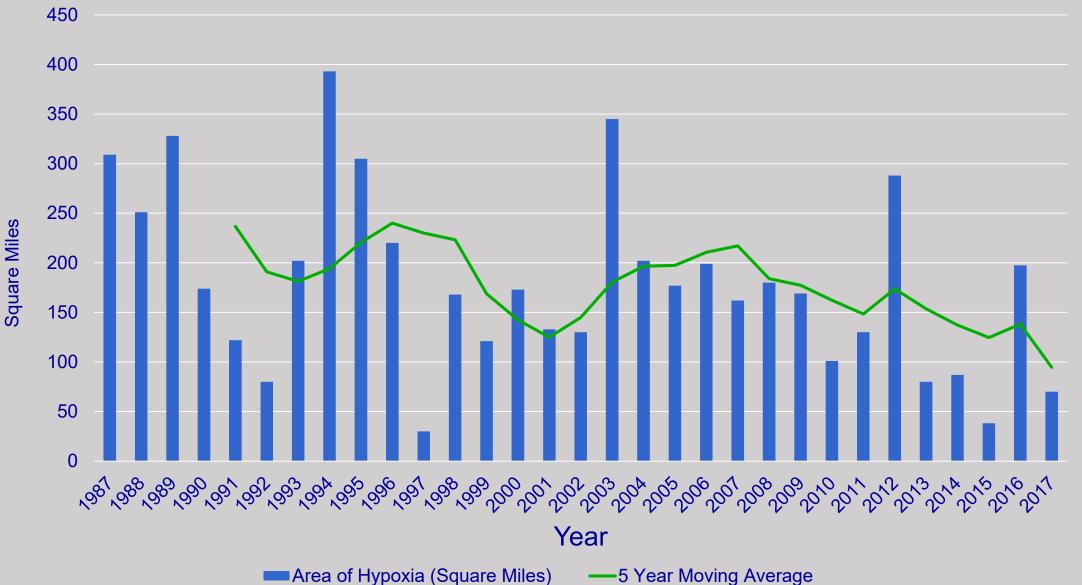

Long Island Sound Nitrogen Reduction Strategy Public Informational Webinar

November 29, 2018

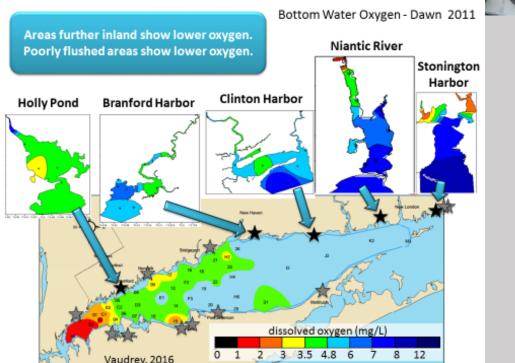
Long Island Sound

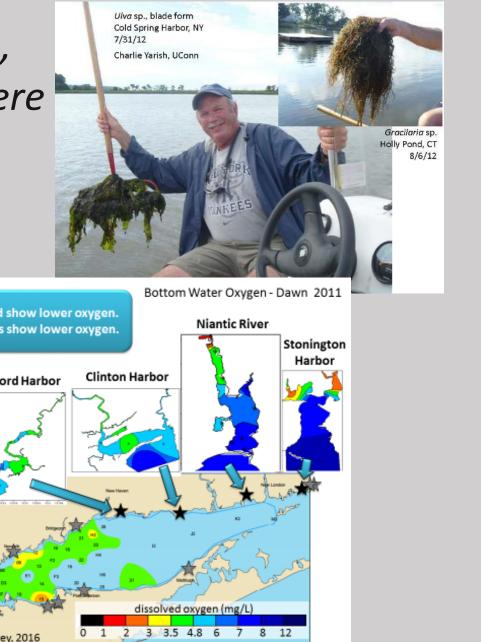

Webinar Agenda

- Brief Background
- Review of Phase 1 contract
- Highlight Task F & G memo out for public comment
- Outline Phase 2 of contract
- Overview of Ongoing Work
- •Questions?


Previous Public Events

- November 8, 2017 Public Webinar
 - Discussion of previously completed tasks and upcoming work
- December 19, 2016 Public Webinar
- February 26, 2016 Public Webinar
- Public In-person Meetings Spring 2016


Menhaden fish kill, 1990s

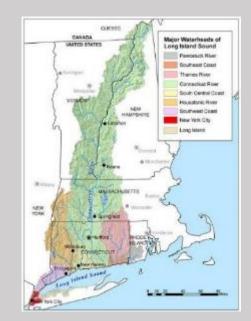


Long Island Sound Area of Hypoxia (Square Miles)

Despite this good progress & positive trends, all the monitoring & modeling show that there is still more to do.

Embayment nitrogen loads for LIS (Vaudrey et al. 2016) **Biomass** Cladophora sp. in Little Narragansett Bay, June 2014 g m⁻² 14000 3 ft thick 2000 Wequetequock CT 10000 Cove 8000 6000 4000 Pawcatuck 1 ft thick River 3500 3000 2500 2000 1500 1000 800 600 1 in thick RI 400 200 100 patchy

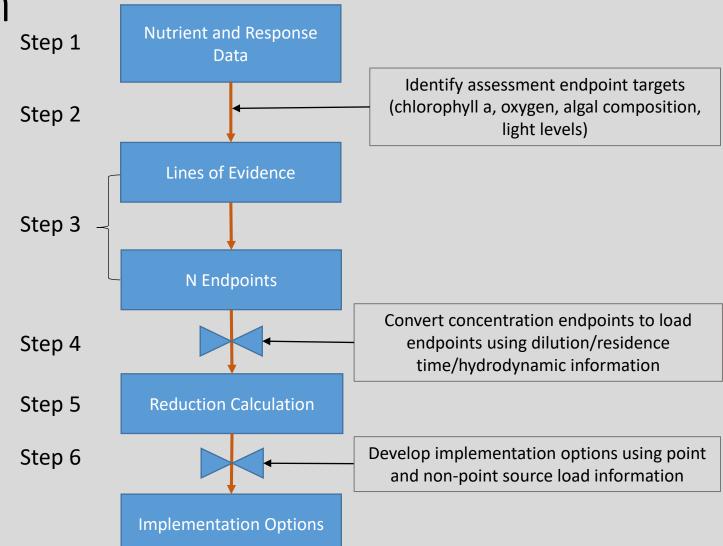
Review of Technical Methodology Phase 1

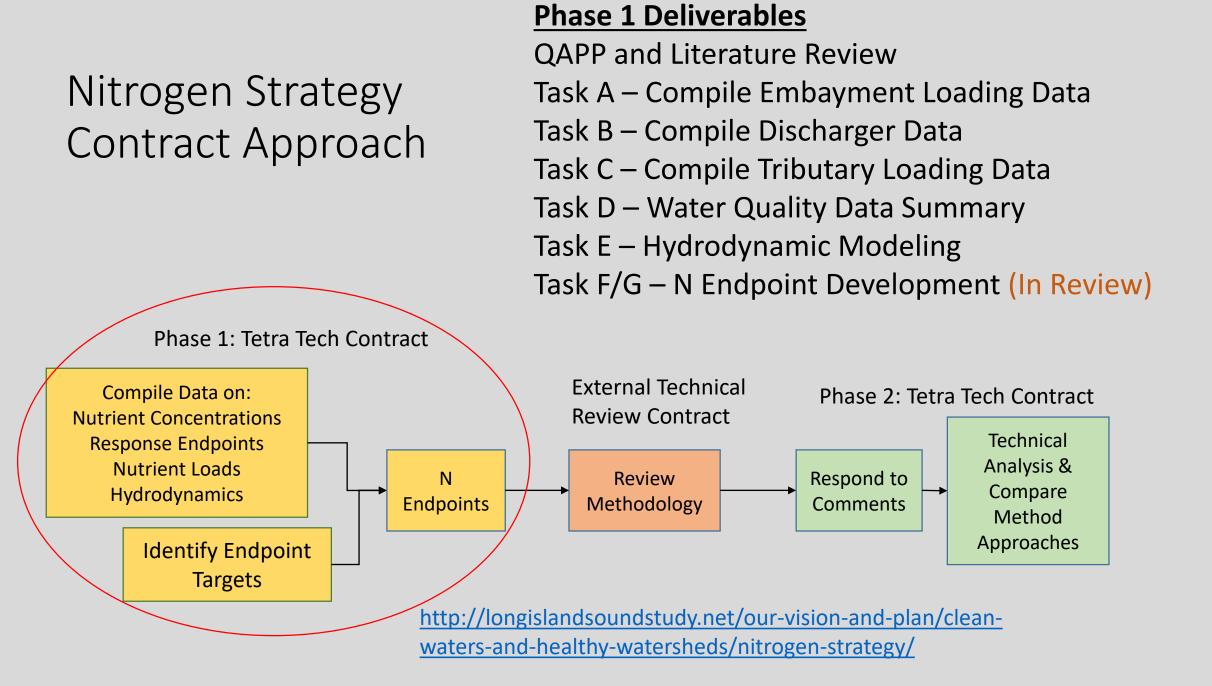

USEPA Tetra Tech Inc.

Goal: Develop Nitrogen (N) loads to meet desired water quality conditions in the Long Island Sound (LIS)

<u>Coastal</u> watersheds that directly drain to embayments or nearshore waters

<u>Tributary</u> watersheds that drain inland reaches




<u>WLIS coastal</u> watersheds with large, direct discharging wastewater facilities

General Approach

Quality Assurance Project Plan (QAPP)

- Describes quality system Tetra Tech will implement to support EPA in establishing N endpoints
- Finalized January 11, 2017 (drives deliverables)
- Updated November 14, 2018 (for new Task Order)

http://longislandsoundstudy.net/wp-content/uploads/2016/02/January-11-2017_TO-23-QAPP_LIS-N-Thresholds-and-Allowable-Loads.pdf 1.0 PROJECT MANAGEMENT – ORGANIZATION AND RESPONSIBILITIES 1.1 Title and Approval Page Secondary Data Quality Assurance Project Plan for

Application of Technical Approach for Establishing Nitrogen Thresholds and Allowable Loads for Three LIS Watershed Groupings: Embayments, Large Riverine Systems and Western LIS Point Source Discharges to Open Water

Contract Number EP-C-12-055 Task Order 0023

Prepared for:

U.S. Environmental Protection Agency Region 1 – New England 5 Post Office Square Boston, MA 02109

Prepared by:

Tetra Tech, Inc. 10306 Eaton Place, Suite 340 Fairfax, VA 22030

December 15, 2016

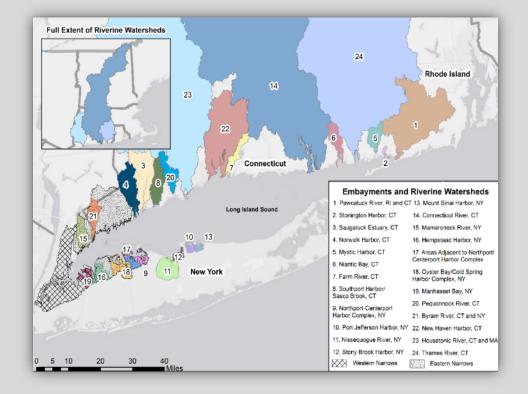
QAPP 476, Revision 0

Effective Date with Signatures: January 11, 2017

This quality assumance project plan (QAPP) has been prepared according to guidance provided in the following documents to ensure that environmental and related data collected, compiled, and/or generated for this project are complete, according, and of the type, quantity, and quality required for their mitended more:

- EP4 Repairments for Quality Assurance Project Flows (EPA QA/R.5, EPA/240B-01/003, U.S. Environmental Protection Agency, Office of Environmental Information, Washington DC, March 2001 [Researed May 2005]. http://www.epa.gov/quality/qu-decs/i5-find.pdf
- EP4 Gatamee for Quality Assurance Project Plane (EPA QA/G-5, EPA/240/R-02/009, U.S. Environmental Project Agency, Office of Environmental Information, Wiskington DC, December 2002a), https://www.epa.gov/info/ep/office/0015.006/comment/cj-final.pdf
- New England QAPP Guidance for Project: Using Secondary Data, Revision 2 (U.S. Environmental Protection Approx, New England, Quality Assumance Unit, Office of Environmental Measurement and Evaluation, Botton, MA, October 2000, <u>https://www.epa.gov/wrev/production/files/2015-</u> 06/documents/EPANESecondaryDataGuidance.pdf
- Guidance for Geospatial Data Quality Assurance Project Plane (EPA QA/G-5G U.S. Environmental Protection Agency, Office of Environmental Information, Washington, DC, March, 2003). http://www.epa.gov/sites/production/files/documents/guidance_geospatial_data_appp.pdf

Tetra Tech, Inc., will conduct work in conformance with procedures detailed in this QAPP.


Literature Review Memo

- Clarifies science underlying technical approach and identifies data gaps
- Summary of:
 - 1. Data sources reviewed for selected watersheds
 - 2. Approach for deriving N endpoint
 - 3. Review of assessment endpoint targets (e.g., seagrass, DO)
- Finalized June 1, 2017
- Updated March 27, 2018

Endpoint	Importance	Linkages to, or Effects of, Nutrients	Advantages	Disadvantages
Seagrass	 Valuable marine habitat Primary food source for many organisms 	 Spatial extent, density, and growth rates decline with decreased light transmittance Light requirement usually 20–25% surface irradiance Light transmittance decreases with decreased clarity in part due to excess phytoplankton or epiphytic biomass from increased nutrients 	 Mechanism of nutrient impact mostly well- understood Colonization depth (Z_c) useful indicator Once Z_c goal is established, can use light requirements to infer water clarity requirement and water column chlorophyll a criteria Historical depth of colonization could be used to infer reference water clarity 	 Cofactors exist: salinity stress, food web change, dredging, propeller scarring, sediment loading, disease Response to nutrients can be slow (especially recovery)

Summary of Tasks A-D

- Purpose: summarize data compilation
 - Task A: Embayment Loadings
 - Task B: Point Source Loadings
 - Task C: Tributary Loadings
 - Task D: Water Quality Data
- Selected watersheds: 23 embayments; Connecticut, Housatonic, and Thames Rivers; and Western LIS (includes Eastern and Western Narrows)
- Finalized first 13 embayments, CT River, and Western LIS: August 4, 2017 and September 15, 2017
- Updated memo with additional waters: March 27, 2018

Task A. Embayment Loadings

1,937,052

- J. Vaudrey Nitrogen Loading Model
- TNC N loading model for Long Island
- Compiled and presented for each waterbody
- Range of N loads (kg N/y)
 - 23 embayments: 7,155 to 1,222,734
 - Eastern Narrows:
 - Western Narrows: 16,541,950

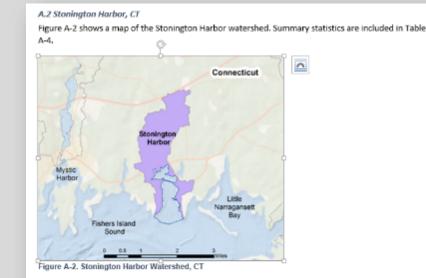
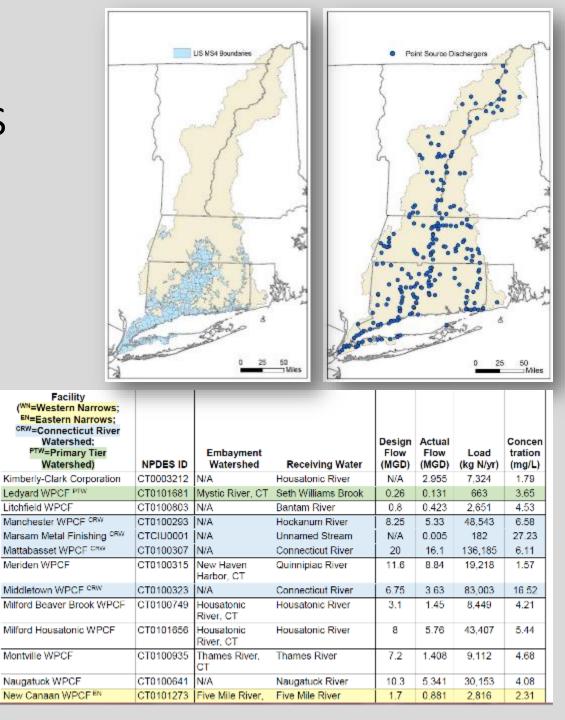
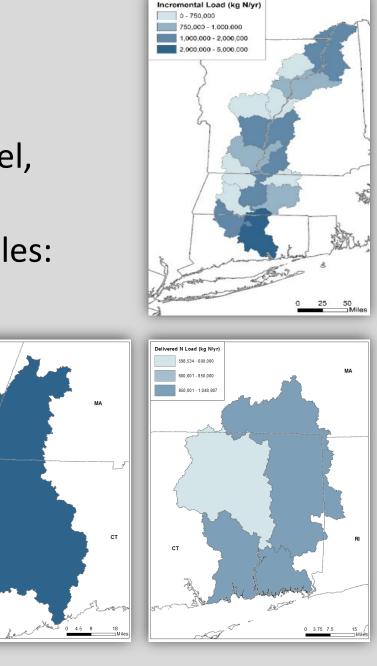



Table A-4. Summary Information for Stonington Harbor Watershed, CT

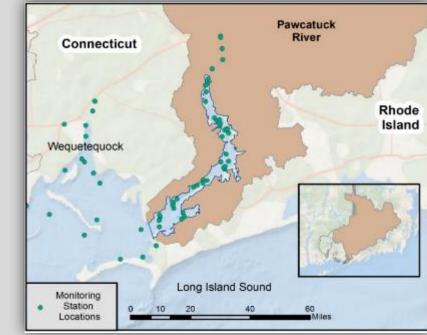
Table A-4. Summary Information for S	
Total Drainage Area of Watershed (Vaudrey et al. 2016)	6.2 km ²
Total Area of Priority Embayment (Vaudrey et al. 2016)	1.8 km ²
Main Tributaries (ESRI 2017)	Stony Brook
Residence Time (Abdeirhman 2005 derived)	 2.5 days
Depth at MLLW (NOAA 2015)	2.4 m average 6 m maximum
Land Use Characteristics (Vaudrey et al. 2016; CLEAR 2010 land use data)	Developed: 23% (developed) Forested: 53% (deciduous, coniferous, forested wetland) Agricultural: 2% (agricultural field)
MS4s New London Stanington 	Percent of watershed with MS4: 35%
Point Sources	 Stonington Borough WPCF: 663 kg N/year in 2015
Total Nitrogen Loading (<u>Vaudrey</u> et al. 2016)	For entire embayment: 7,155 kg N/year From atmospheric deposition: 3,061 kg N/year From fertilizer: 1,131 kg N/year From sewer: 2,070 kg N/year From septic and cesspools: 894 kg N/year

Task B. Point Source Loadings


- Point sources (Data from EPA, ICIS and USGS)
- MS4s (NY and MA watershed models; CT – in development by state, NH/VT – no MS4s)
- 235 point source dischargers
 - Together discharged 19.2 million kg N/yr
- 340 regulated MS4s
 - 202 in CT, 86 in NY, 47 in MA, and 5 in RI
 - NY/MA loads: over 1.3 million kg N/yr

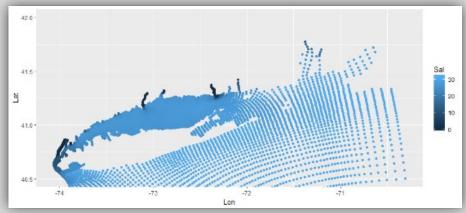
Task C. Tributary Loadings

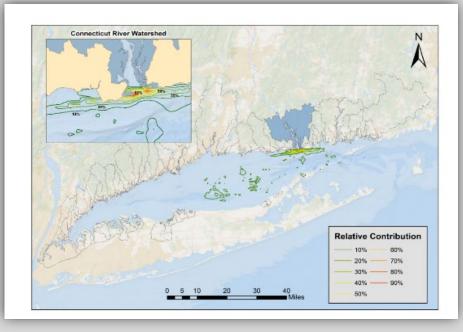
- Data: USGS, NOAA, SPARROW, LIS TMDL, AVGWLF model, HSPF model
- Load estimates for CT, Housatonic, and Thames at 3 scales:
 - Entire watershed
 - Specific USGS gauges
 - Subwatersheds
- Load Range (kg N/y):


2,601,608 (Thames) to 15,604,101 (CT)

NY

Task D. Water Quality Data

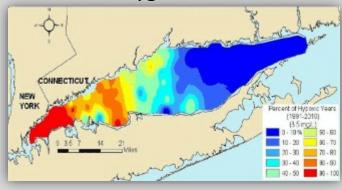

- Solicited data from broad range of sources (N=27)
- Screened for data requirements (applicability, availability, QA)
 - >24,000 nutrient samples
 - >65,000 response measure samples
 - 588 stations
- Memo provided data details by waterbody



Monitoring	Data Number of Collection		Number of Nutrient Samples		Number of Response Samples			
Organization	Stations	Period	TN	TP	Chl a	DO	SD	
CT DEEP	60	2006–2015	4,068	3,956	3,876	8,204	2,295	
EPA NCCA	56	2006–2010	54	53	54	72	23	
EPA Region 1	7	2017	23	23	23	23	21	
EPA ORD	152	2000–2009	88	0	448	1,320	580	
Friends of the Bay	22	2008–2014	612	0	0	0	0	
Harbor Watch	36	2006–2015	0	0	0	2,343	639	
IEC	22	2006–2015	99	99	641	7,574	2,367	
NOAA (Hunts Point)	1	2012	26	0	112	143	0	
NYC DEP	45	2006–2015	5,179	5,185	5,191	7,828	7,973	
Stony Brook University–Dr. Gobler	6	2014–2016	0	0	216	216	210	
Suffolk County	57	2006–2015	1,697	1,697	1,547	3,311	1,639	
University of Connecticut (Vaudrey)	96	2013–2014ª	269	0	140	530	19	
University of Connecticut (Yarish)	3	2011–2016	0	0	0	0	33	
URIWW	25	2007–2015	725	724	942	1,379	365	
Total	588		12,840	11,737	13,190	32,943	16,164	

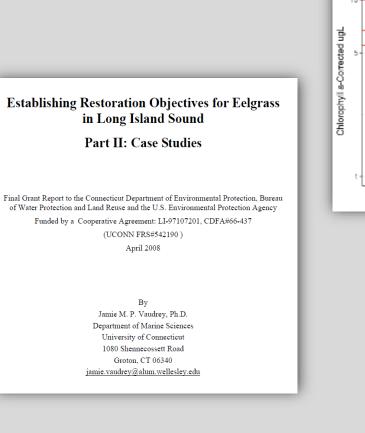
Summary of Task E. Hydrodynamics

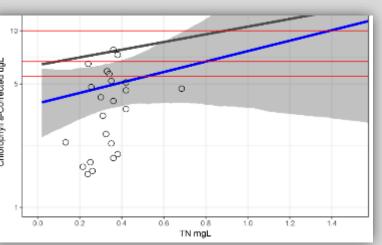
- Calculate mixing between LIS and selected embayments
 - Off-the-shelf model (NYHOPS)
- Particle tracking routine used to estimate area of influence and contribution of rivers to LIS waters
- Salinity model used to estimate mixing/dilution
 - Range: 100% to 77% dilution
- Round 1 memo: October 20, 2017
- Updated: March 27, 2018

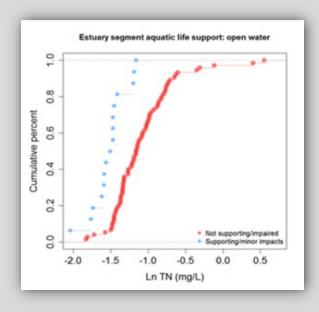

Task F/G. N Endpoint Development

- Develop TN endpoints for each waterbody
- Protect:
 - Seagrasses (light)
 - Aquatic Life (DO)
- Targets for round 1 waters: 13 embayments, CT River, and Western LIS

Seagrasses


Dissolved Oxygen




N Endpoints Development: Methods

Multiple lines of evidence

- Literature
- Stressor-Response
- Distribution-Based

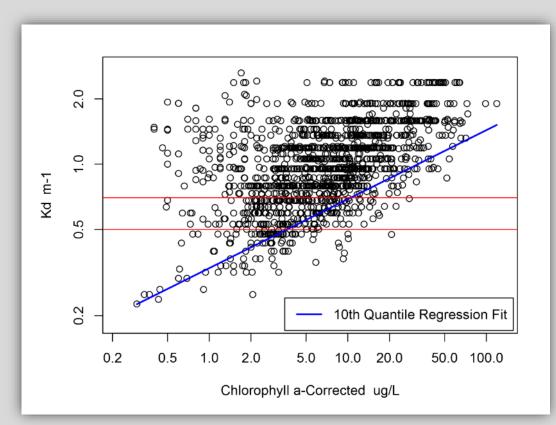
Results: Literature

- TN values to protect valued endpoints
- Relied on heavily researched and studied Massachusetts estuaries

Embayments

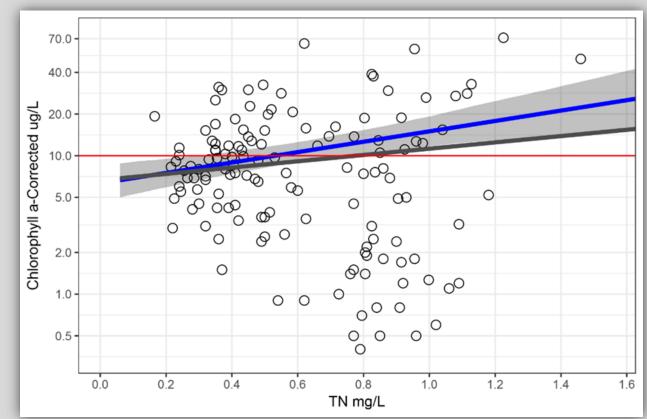
Median TN (mg/L)	0.39	Summary for
Min TN (mg/L)	0.30	Seagrass
Max TN (mg/L)	0.49	Protection

Open Water

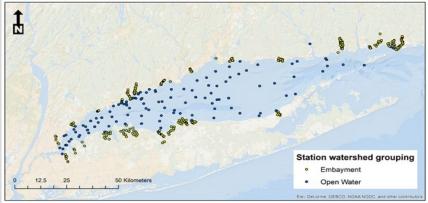

Median TN (mg/L)	0.46	
Min TN (mg/L)	0.30	Summary for Non- seagrass
Max TN (mg/L)	0.60	Endpoints*

*Excludes values at or above 0.800 severe degradation endpoint

Results: Stressor-Response

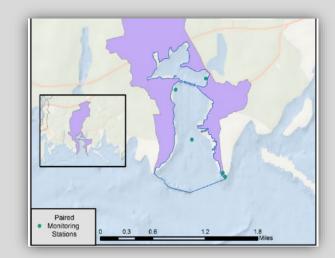

- Chlorophyll tied to clarity goals
 - Based on providing 15% to 35% surface light at seagrass colonization depths
 - K_d of 0.5 to 0.7
 - Provides 14% to 78% light at average embayment depths (Average = 52%)
- Dissolved Oxygen models were not significant

K _d Endpoint	Associated Chlorophyll a
0.5	3.71
0.7	9.83


Results: Stressor-Response

- Used chlorophyll (Chl) values of 3.5, 5.5, and 10 $\mu g/L$
- Ran embayment specific Chl vs Total Nitrogen models
- Interpolated values from regressions (e.g., here 0.53 mg/L TN at 10 μg/L chlorophyll)

Results: Distribution-Based


- Percentiles of Total Nitrogen (TN) concentrations at embayments or open water
- Per 2001 EPA guidance

Watershed Grouping								
Percentile	5%	10%	25%	Median	75%	90%	95%	Ν
All Embayments TN (mg/L)	0.19	0.22	0.27	0.37	0.56	0.95	1.66	587
All Open Water TN (mg/L)	0.20	0.21	0.24	0.30	0.50	0.98	1.34	345

N Endpoint Development: Results

- Compiled tables for each selected tier water
- Report ranges of values from different lines
- Accompanying narrative explains each value

Endpoint Parameter	Endpoint Method	TN Endpoint (mg/L)
Chlorophyll a-corrected	Stressor–Response Model for Individual Embayments Mean (90 th Percent Confidence Interval)	0.48 (0.06–2.52)
Aquatic Life Protection	Literature Review Median Protective of Seagrass Endpoints (Range)	0.40 (0.30–0.50)
	Distribution-Based Approach	0.27

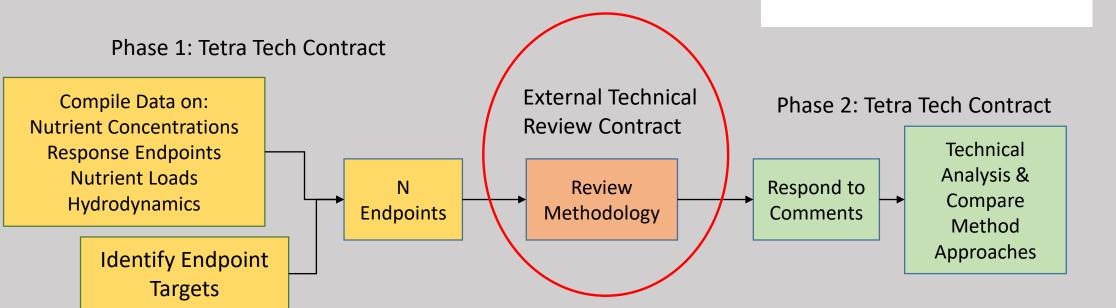
N Endpoint Development: Task F/G

- Draft out for public review
- Task F/G memo can be found at: http://longislandsoundstudy.net under Nitrogen Strategy link
- Will incorporate feedback
- Please provide your technical comments to <u>LISNitrogen@EPA.gov</u> by Dec 14, 2018

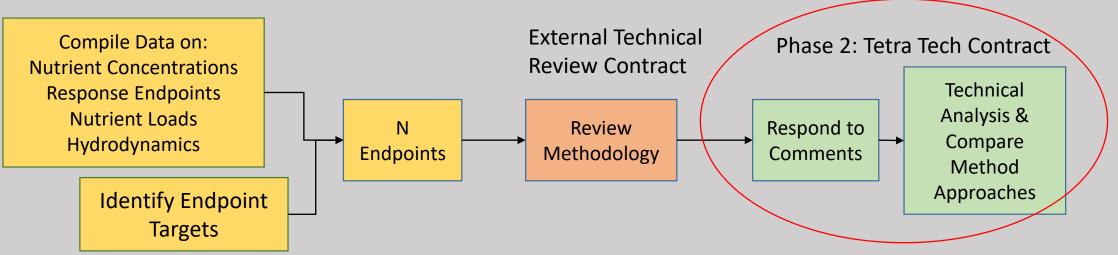
External Technical Review

- Four external specialists are reviewing the Phase 1 deliverables
- This review will be used to further refine the deliverables and inform Phase 2
- Results are expected in early 2019

Establishing Nitrogen Endpoints for Three Long Island Sound Watershed Groupings:


Embayments, Large Riverine Systems, and Western Long Island Sound Open Water

Subtasks F/G. Draft Summary of Empirical Modeling and Nitrogen Endpoints



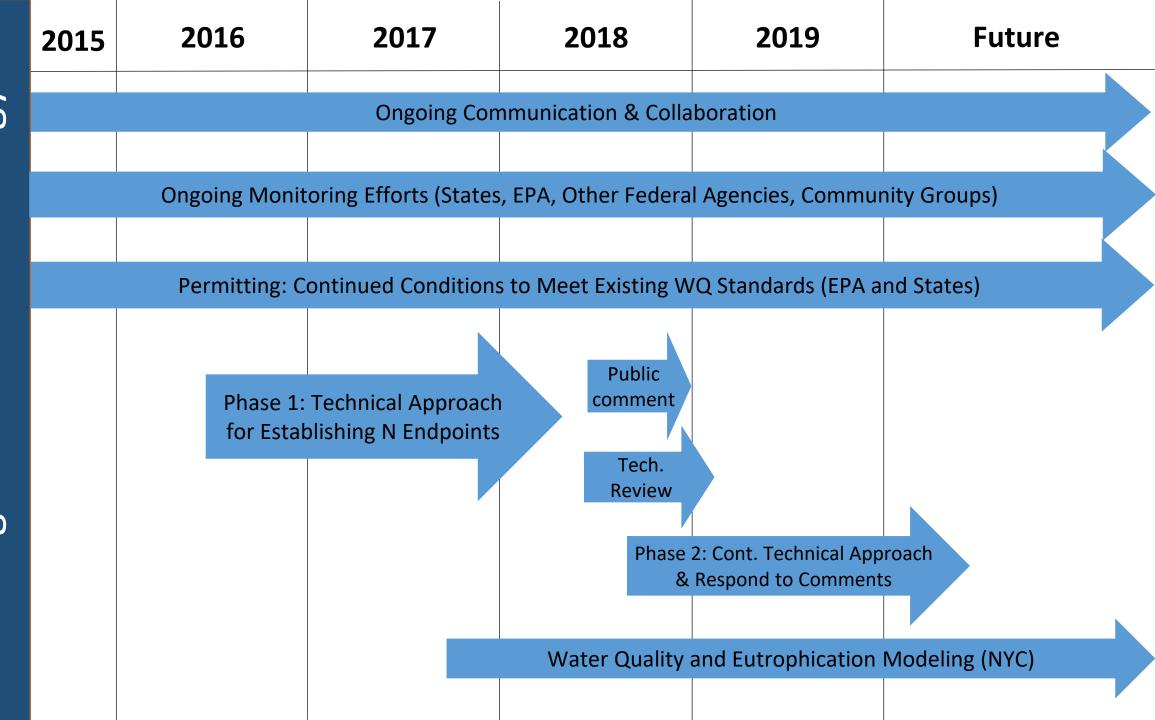
Overview: Phase 2 of the Nitrogen Strategy

Phase 1: Tetra Tech Contract

Phase 2: Response to Comments

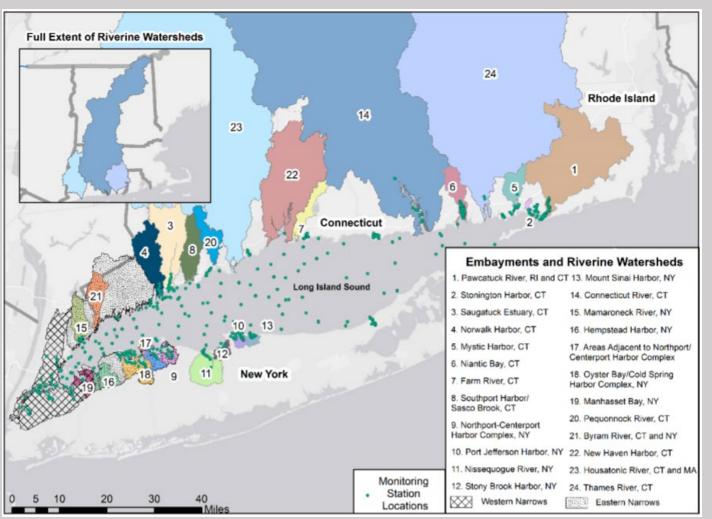
- Respond to External Technical Review
- Respond to Public Comments
- Refine and complete the technical approach

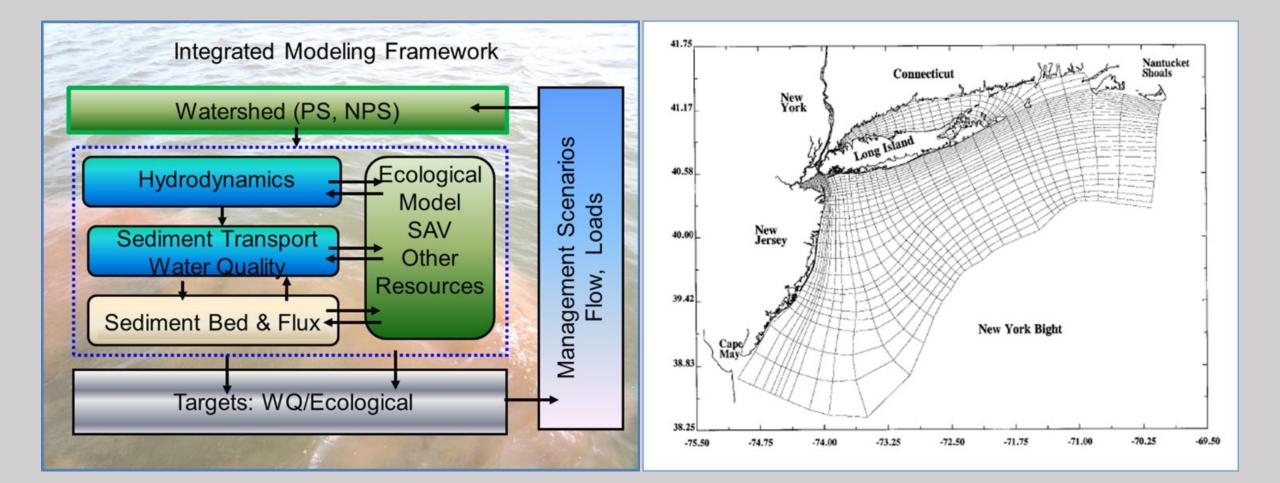
Phase 2: Increased Collaboration


- Coordinate Nitrogen Endpoint Work
 - Long Island Sound Nitrogen Action Plan
 - Suffolk County
 - Niantic River Estuary Workgroup
- Technical Stakeholder Group Coordination
- Increase collaboration, knowledge sharing, and data sharing among all partners

Phase 2: Addressing Evaluation and Monitoring Gaps

- Revise deliverables based on new monitoring data
- Identify where water quality monitoring data gaps exist
- Expand geographic focus of methodology
- Draft technical gap analysis and method comparison




Ongoing: Water Quality Monitoring

- Continuation of ongoing LIS monitoring efforts
- Expansion of LIS open water and embayment monitoring around the Sound
- Mouth of Connecticut River

 2017 EPA CT River Data Report
 posted on LIS website
 - Sampled CT River again in
 2018, report anticipated early
 2019

Ongoing: Integrated Modeling (NYC)

Thank you for participating

- Please go to <u>http://longislandsoundstudy.net</u> under Nitrogen Strategy link to:
 - Register for email updates
 - Access technical documents and presentation slides
- Provide your technical comments on Task F & G Memo to LISNitrogen@EPA.gov by Dec 14, 2018

Direct link for access http://longislandsoundstudy.net/issues-actions/water-quality/nitrogen-strategy/