Establishing Nitrogen Target Concentrations for Three Long Island Sound Watershed Groupings:

Embayments, Large Riverine Systems, and Western Long Island Sound Open Water

Subtask H. Summary of Reductions

Submitted to:

U.S. Environmental Protection Agency Region 1 and Long Island Sound Office

Tetra Tech, Inc.

September 27, 2022

This Tetra Tech technical study was commissioned by the United States Environmental Protection Agency (EPA) to synthesize and analyze water quality data to assess nitrogen-related water quality conditions in Long Island Sound and its embayments, based on the best scientific information reasonably available. This study is neither a proposed Total Maximum Daily Load (TMDL), nor proposed water quality criteria, nor recommended criteria. The study is not a regulation, is not guidance, and cannot impose legally binding requirements on EPA, States, Tribes, or the regulated community. The technical study might not apply to a particular situation or circumstance, but it is intended as a source of relevant information to be used by water quality managers, at their discretion, in developing nitrogen reduction strategies.

Subtask H. Summary of Reductions

Contents

Introduction	H-1
Methods	H-1
Sample Calculation	H-11
Results	H-11
H.1 Pawcatuck River, RI and CT	H-12
H.2 Stonington Harbor, CT	H-14
H.3 Saugatuck Estuary, CT	H-15
H.4 Norwalk Harbor, CT	H-16
H.5 Mystic Harbor, CT	H-17
H.6 Niantic Bay, CT	H-18
H.7 Farm River, CT	H-19
H.8 Southport Harbor/Sasco Brook, CT	H-20
H.9 Northport-Centerport Harbor Complex, NY	H-21
H.10 Port Jefferson Harbor, NY	H-22
H.11 Nissequogue River, NY	H-23
H.12 Stony Brook Harbor, NY	H-24
H.13 Mt. Sinai Harbor, NY	H-25
H.14 Eastern and Western Narrows (Combined), CT and NY	H-26
H.15 Connecticut River, CT	H-27
H.16 Mamaroneck River, NY	H-28
H.17 Hempstead Harbor, NY	H-29
H.18 Areas Adjacent to the Northport–Centerport Harbor Complex, NY	H-30
H.19 Oyster Bay/Cold Spring Harbor Complex, NY	H-32
H.20 Manhasset Bay, NY	H-33
H.21 Pequonnock River, CT	H-34
H.22 Byram River, CT and NY	H-35
H.23 New Haven Harbor, CT	H-36
H.24 Little Narragansett Bay, CT and RI	H-37
H.25 Housatonic River, MA and CT	H-38
H.26 Thames River, CT	H-39
References	H-40

Introduction

The goal of this task is to provide technical support and outline potential decision-making processes for federal, state, and local partners to utilize in developing nitrogen reduction strategies for the Long Island Sound (LIS) waterbodies included in this effort. This task translates the nitrogen target concentrations documented in the subtasks F and G memos into percent reduction targets for watershed loads to each embayment waterbody within Long Island Sound (LIS). This was accomplished with a simple mixing model frequently applied in similar contexts. The results are percent reduction goals for each waterbody, that if implemented through a loading distribution process, could be expected to support attainment of the nitrogen target concentrations.

Methods

Once a target concentration and an appropriate averaging period are established for a waterbody, the concentration target can be converted to an estimated load reduction using a zero-order mixing model approach. This approach starts with the mass balance for load to an embayment:

$$Q_0 C_0 + Q_{LIS} C_{LIS} = Q_{out} C_e$$

(Equation 1)

where

 Q_0 = watershed inflow

C₀ = existing watershed average total nitrogen (TN) inflow concentration

 $Q_{L/S}$ = boundary flow into the embayment from LIS

 $C_{L/S}$ = boundary TN concentration in LIS

 Q_{out} = total flow out of the embayment to LIS

 C_e = existing embayment TN concentration

See Figure H-1 for an illustration of these terms.

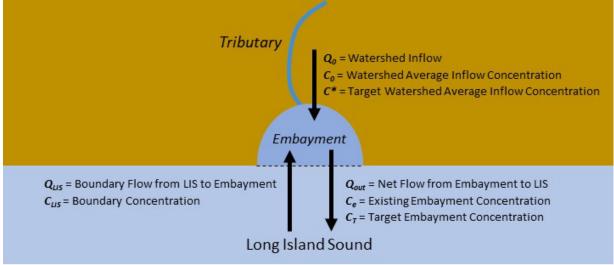


Figure H-1. Conceptual Model of Zero-Order Mixing Model and Variables Used in the Derivation of the Load Reduction

At steady state, the change in embayment volume is zero, and therefore:

$$Q_{out} = Q_0 + Q_{LIS}$$

Simple dilution calculations do not fully describe the detailed time history of TN concentrations in an embayment. If sufficient data were available, a more sophisticated representation of nitrogen cycling in estuaries would consider the variety of local nitrogen transformations, exchanges with the sediment, and gaseous emissions to the atmosphere. EPA assumes that the net rate of internal gains or losses are small compared to the nitrogen turnover associated with external exchange and mixing; therefore, nitrogen concentrations are sufficiently conservative for this effort, but EPA acknowledges that this is a simplification. Under these assumptions, simple dilution calculations are sufficient to obtain an estimate of the reduction in loading from the local watershed that would be required to achieve a target TN concentration within an embayment.

The goal of this effort is to identify the reduction necessary to meet the growing season (April to September) target concentrations in the embayments (C_7) defined in the subtasks F and G memos. This reduction is achieved by reducing the growing season watershed average inflow concentration from C_0 to a target watershed average inflow concentration C^* that achieves the target. The fractional reduction needed is represented by

$$1 - \frac{c^*}{c_0}$$
 (Equation 3)

Concentration of a conservative constituent in an embayment, C_e , can be represented by rearranging Equation 1 and applying the substitution in Equation 2 as

$$C_e = \frac{(C_0 Q_0 + C_{LIS} Q_{LIS})}{(Q_0 + Q_{LIS})}$$
(Equation 4)

For salinity EPA can assume that C_0 is insignificant relative to C_{LIS} ($C_0 \approx 0$ is appropriate because it represents net watershed freshwater inflow from the land).¹ With that assumption,

$$C_{e-salinity} \approx \frac{(C_{LIS}Q_{LIS})}{(Q_0+Q_{LIS})} = C_{LIS} \times D$$
 (Equation 5)

where

$$D = \frac{c_e}{c_{LIS}} = \frac{(Q_{LIS})}{(Q_0 + Q_{LIS})}$$
(Equation 6)

D is a dilution factor for the embayment relative to water in LIS and can be obtained from the salinity results (S_e/S_{LIS}) in Memo E. Q_0 and Q_{LIS} are then related by

 $Q_0 = Q_{LIS} \left(\frac{1}{D} - 1\right)$ (Equation 7)

¹ Refer to Appendix 1 in Anning, D.W, and M.E. Flynn. 2014. *Dissolved-Solids Sources, Loads, Yields, and Concentrations in Streams of the Conterminous United States*. U.S. Geological Survey Scientific Investigations Report 2014-5012, 101 p. <u>http://dx.doi.org/10.3133/sir20145012</u>.

One can then estimate the concentration of any other conservative constituent for which C_0 is nonzero using the mixing and dilution information deduced from salinity by substituting the definition of Q_{o} (Equation 7) into the general equation for C_e (Equation 4), such that

$$C_e = \frac{\left(c_0\left(\frac{1}{D}-1\right)+c_{LIS}\right)}{\left(\frac{1}{D}\right)}$$
(Equation 8)

or

$$C_0 = \frac{C_{e/D} - C_{LIS}}{\frac{1}{D} - 1}$$
 (Equation 9)

To estimate the target watershed average inflow concentration (C^*) that yields a target concentration in the estuary of C_{T} , substitute C_{T} for C_{e} in Equation 9 to obtain

$$C^* = \frac{\frac{C_T}{D} - c_{LIS}}{\frac{1}{D} - 1}$$
 (Equation 10)

The required percent reduction in watershed inflow concentration (Equation 3) can then be calculated from C^{*} using equation 9 and empirical estimates of C_0 as

$$\left(1 - \frac{c^*}{c_0}\right) \times 100 \tag{Equation 11}$$

Since one rarely empirically knows the watershed average inflow concentration across all watershed inputs to a waterbody, one combines equations 9 and 10 to calculate the reductions using:

$$1 - \frac{C^*}{C_0} = 1 - \frac{\frac{C_{T/D} - C_{LIS}}{\frac{1}{D} - 1}}{\frac{C_{e/D} - C_{LIS}}{\frac{1}{D} - 1}} = \frac{(C_e - C_T)}{\left\{C_e - \left[C_{LIS} \times (\frac{S_e}{S_{LIS}})\right]\right\}}$$
(Equation 12)

Equations 11 and 12 provide an estimate of the needed percent reduction in nitrogen sources under approximate steady-state conditions. The approach assumes that any gains of TN to the water column from the sediment are ultimately derived from external loading and that the balance between denitrification losses and nitrogen fixation by cyanobacteria and other nitrogen-fixing organisms are small relative to the external loads and exchanges. As denitrification is expected to be greater than nitrogen fixation in nitrogen-enriched waters, these two equations more likely overestimate the percent reduction needed rather than underestimate it. Alternatively stated, if the net flux due to denitrification minus nitrogen fixation was known and was incorporated into the mass balance, the estimated reduction needed would be less.

The embayment estimates focus on the reductions from the landward side. Reductions could also come from the boundary side (reductions that lower C_{LIS}). Those reductions would have to be estimated by applying iterative reductions to the LIS boundary as well as to the landward side. Example estimates to changes in landward reductions for presumed reductions in boundary concentrations are provided for each waterbody section.

For the open waters (Western Narrows, Eastern Narrows, and the Combined Western and Eastern Narrows), reductions focus on the western and landward (northern and southern) sides. The eastern side of the waterbodies is considered the boundary. For these waters, reductions from both the

(Equation 13)

boundary and the landward sides are, however, likely needed and are discussed in the respective waterbody sections.

Two approaches were used to estimate values for C_e . First, EPA estimated mean growing season TN concentrations in each waterbody using available surface water quality data (subtask D). Second, for the embayments only, EPA estimated a growing season average TN concentration for each embayment using a hierarchical model whose general approach is explained in the subtasks F and G memo. For this application, however, EPA modeled average growing season TN using the following equation:

$$TN_{ij} = \beta_0 + \beta_{0j} + e_{ij}$$

where β_0 is the global intercept, β_{0j} are the intercept adjustments for each embayment group, e_{ij} is the error term, *j* is the index for each embayment group, and *i* is the index for each observation within group *j*. EPA used a Gaussian (normal) distribution with a natural log link. The final model contained 4,131 observations across 177 stations. This included all TN data for surface samples observed during the growing season in all embayments. Similar to the regression models in subtasks F and G, this hierarchical model allowed EPA to estimate growing season average TN concentrations for embayments (*C*_e) for which EPA did not have sufficient surface water quality data to calculate a mean concentration. Table H-1 shows the results.

Table H 1 Estimated Average	Growing Season TN Con	contrations for Each Priorit	v Embaymont
Table H-1. Estimated Average	Growing Season in Con	centrations for Each Phone	y Empayment

Waterbody	Hierarchical TN Estimate (C _e) (mg/L)
Pawcatuck River, RI and CT	0.549
Stonington Harbor, CT	0.321
Saugatuck Estuary, CT	0.573
Norwalk Harbor, CT	0.461
Mystic Harbor, CT	0.562
Niantic Bay, CT	0.268
Farm River, CT	0.461
Southport Harbor / Sasco Brook, CT	0.461
Northport-Centerport Harbor Complex, NY	0.350
Port Jefferson Harbor, NY	0.272
Nissequogue River, NY	0.488
Stony Brook Harbor, NY	0.284
Mt. Sinai Harbor, NY	0.319
Eastern Narrows, CT and NY ^a	0.383
Western Narrows, NY ^a	0.965
Eastern and Western Narrows (Combined), CT and NY ^a	0.674
Connecticut River, CT	0.485
Mamaroneck River, NY	0.746
Hempstead Harbor, NY	0.632
Huntington Bay, NY	0.268
Huntington Harbor, NY	0.408
Lloyd Harbor, NY	0.302
Oyster Bay/Cold Spring Harbor Complex, NY	1.289
Manhasset Bay, NY	0.782

Waterbody	Hierarchical TN Estimate (C _e) (mg/L)
Pequonnock River, CT	0.349
Byram River, CT and NY	0.461
New Haven Harbor, CT	0.429
Little Narragansett Bay, CT and RI	0.453
Housatonic River, MA and CT	0.461
Thames River, CT	0.461

Notes: mg/L = milligrams per liter

^a Averages for the Narrows are the arithmetic averages of the open water station data.

To estimate *C*_{L/S}, EPA needed to estimate the seasonal average TN concentration at the boundary of each embayment and the open water segments (Eastern Narrows, Western Narrows, and Eastern and Western Narrows Combined). Common spatial interpolation methods include inverse distance weighting (IDW) and kriging. IDW is a deterministic method (no estimate of uncertainty), whereas kriging is a geostatistical method that produces an estimate of uncertainty. IDW analysis results can sometimes produce a "bullseye" effect when viewing a map of predictions, while kriging results tend to appear more natural. Based on these two differences, kriging was selected as the spatial interpolation method.

EPA used R software (R Core Team 2019) to perform the statistical analysis. The package "geoR" (Ribeiro and Diggle 2016) was used to run the kriging analysis. To estimate C_{LIS} , EPA used TN observations (subtask D) taken from the surface at open water stations across LIS. The kriging input requires a single value per location, so the median growing season TN value was used in the model (n = 106 stations).

Kriging uses generalized least squares to model both the main predictors (typically longitude and latitude) and the spatial dependency in the data. Spatial dependency is modeled using a covariance function. Commonly selected functions include the Matern, exponential, and spherical covariance functions. The variograms were modeled as isotropic, meaning that the variance versus distance relationship was assumed not to vary based on the direction (e.g., Northeast) from station "A" to "B." The exponential function fit the data the best based on visual assessment of the (semi)variogram (Figure H-2).

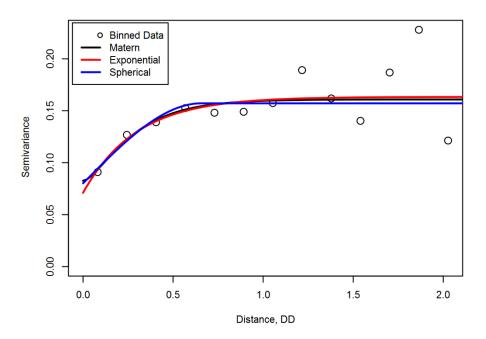


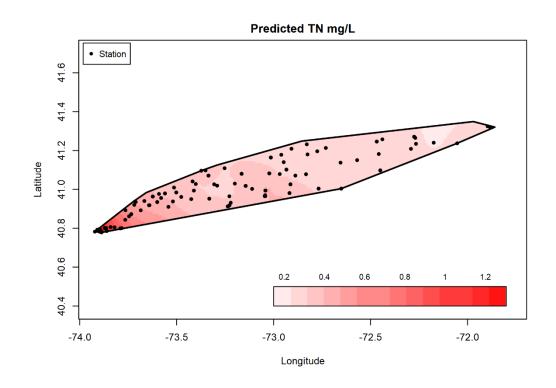
Figure H-2. Variogram of Variation Versus Distance (Decimal Degrees); Various Covariance Functions Were Compared to Observed (Binned) Data

The formula for the exponential covariance function is

Semivariance = Partial.Sill *
$$\exp\left(-\frac{h}{Range}\right) + Nugget$$
 (Equation 13)

where *Partial.Sill*, *Range*, and *Nugget* are estimated parameters that describe the shape of the covariance function in Figure H-2, and *h* is the observed distance between two samples. The variogram is an exponential function where the variance increases nonlinearly as distance (h) increases. *Nugget* is the y-intercept term, *Range* is the x-distance where the curve plateaus, and *Partial.Sill* is the "plateau - nugget" y-distance on the curve.

The kriging equation for the main predictors is


$$TN_i = Intercept + \beta 1 * Longitude_i + \beta 2 * Latitude_i + e_i$$
 (Equation 14)

where *TN* is the growing season average, $\beta 1$ and $\beta 2$ are calibrated parameters, *Longitude* and *Latitude* are in decimal degrees, *e* is the (spatially correlated) error, and *i* is the station index. EPA used a natural log link during modeling. Parameter estimates for the kriging and covariance function are presented in Table H-2.

Parameter	Estimate
Intercept	13.6
β1	-0.47
β2	-1.20
Nugget	0.071
Partial Sill	0.087
Range	0.39

Table H-2. Kriging Parameter Estimates

The modeled growing season average TN concentrations across the entire LIS and the standard error around those averages are presented in Figure H-3.

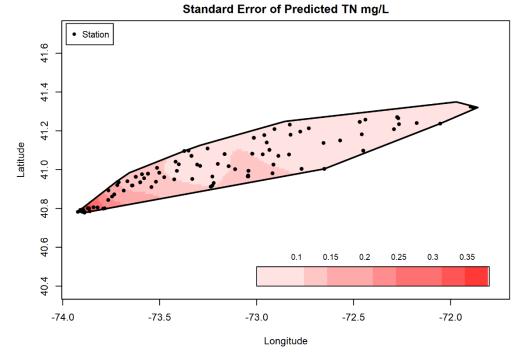


Figure H-3. Spatially Averaged Growing Season Predicted Average TN Concentration (*Top Image*) and Standard Error of the Predicted Average TN Concentration (*Bottom Image*) across LIS. Estimated Nitrogen Concentrations (mg/L) Identified on the Contour Lines. Darker Red Denotes Increased TN Concentration (*Top Image*) and Increased Standard Error (*Bottom Image*).

From these spatially averaged TN concentrations, EPA was able to estimate a C_{LIS} value at any boundary location in LIS, which EPA extracted for each waterbody (Table H-3). Because sampling locations rarely aligned with the precise boundary, EPA selected coordinates near the middle of the embayment/LIS boundary. For C_{LIS} values associated with the Narrows, EPA used the average of predicted TN values of a set of points placed 1 kilometer apart along the given boundary.

Waterbody	Latitude	Longitude	Growing Season Average (<i>C</i> _{L/S}) (mg/L)	Standard Error (mg/L)
Pawcatuck River, RI and CT	41.3203	-71.8593	0.213	0.072
Stonington Harbor, CT	41.3260	-71.9091	0.220	0.072
Saugatuck Estuary, CT	41.1009	-73.3604	0.333	0.101
Norwalk Harbor, CT	41.0629	-73.3970	0.314	0.095
Mystic Harbor, CT	41.3489	-71.9703	0.206	0.071
Niantic Bay, CT	41.2961	-72.1822	0.193	0.063
Farm River, CT	41.2487	-72.8539	0.224	0.072
Southport Harbor / Sasco Brook, CT	41.1252	-73.2917	0.306	0.097
Northport-Centerport Harbor Complex, NY	40.9106	-73.4034	0.349	0.111
Port Jefferson Harbor, NY	40.9715	-73.0925	0.371	0.113
Nissequogue River, NY	40.9083	-73.2323	0.332	0.099
Stony Brook Harbor, NY	40.9301	-73.1479	0.351	0.111
Mt. Sinai Harbor, NY	40.9657	-73.0437	0.389	0.114
Eastern Narrows, CT and NY ^a	41.0008	-73.4066	0.308	0.090
Western Narrows, NY	40.8747	-73.7615	0.639	0.069
Eastern and Western Narrows (Combined), CT and NY ^a	40.9569	-73.5300	0.308	0.152
Connecticut River, CT	41.2731	-72.3320	0.218	0.171
Mamaroneck River, NY	40.9398	-73.7205	0.504	0.109
Hempstead Harbor, NY	40.8600	-73.6671	0.551	0.116
Huntington Bay, NY	40.9206	-73.4176	0.346	0.115
Huntington Harbor, NY	40.9073	-73.4329	0.365	0.123
Lloyd Harbor, NY	40.9109	-73.4355	0.363	0.200
Oyster Bay/Cold Spring Harbor Complex, NY	40.9205	-73.5082	0.404	0.098
Manhasset Bay, NY	40.8437	-73.7455	0.672	0.132
Pequonnock River, CT	41.1551	-73.1791	0.297	0.074
Byram River, CT and NY	40.9836	-73.6568	0.428	0.071
New Haven Harbor, CT	41.2227	-72.9390	0.232	0.094
Little Narragansett Bay, CT and RI	41.3187	-71.8682	0.215	0.068
Housatonic River, MA and CT	41.1572	-73.0961	0.291	0.072
Thames River, CT	41.3179	-72.0818	0.198	0.072

 Table H-3. Estimated Average and Standard Error Growing Season TN Concentrations at the LIS Boundary of

 Each Embayment Using Spatial Average Modeling

Notes: mg/L = milligrams per liter

^a The Eastern Narrows boundary is the same as for the Eastern and Western Narrows (Combined).

With these estimates of C_e and C_{LIS} , along with the estimated target concentration C_7 from subtask G for each embayment and the salinity-based dilution estimates from subtask E (Table H-4), EPA then used Equation 12 to calculate the percent reduction for each embayment. EPA also provided reduction scenarios where the boundary concentration is also systematically reduced. EPA recognizes that ongoing reduction efforts across the LIS watershed are affecting the boundary condition and the boundary condition may continue to change in the future (e.g., as a result of further nitrogen reductions to LIS). So, while management for any one embayment may focus on its individual watershed for load reductions, EPA wanted to provide scenarios that account for potential reductions in the boundary side itself.

Waterbody	Se/SLIS (Dilution)
Pawcatuck River, RI and CT	0.995
Stonington Harbor, CT	0.966
Saugatuck Estuary, CT ^a	0.951
Norwalk Harbor, CT	0.957
Mystic Harbor, CT	0.997
Niantic Bay, CT ^a	0.940
Farm River, CT	0.982
Southport Harbor / Sasco Brook, CT	0.982
Northport-Centerport Harbor Complex, NY ^a	0.976
Port Jefferson Harbor, NY	0.985
Nissequogue River, NY	0.989
Stony Brook Harbor, NY	0.992
Mt. Sinai Harbor, NY	0.992
Eastern and Western Narrows (Combined), CT and NY ^b	1.000
Connecticut River, CT	0.240
Mamaroneck River, NY	0.908
Hempstead Harbor, NY	0.985
Huntington Bay, NY	0.991
Huntington Harbor, NY	0.991
Lloyd Harbor, NY	0.988
Oyster Bay/Cold Spring Harbor Complex, NY ^a	0.965
Manhasset Bay, NY	0.983
Pequonnock River, CT	0.961
Byram River, CT and NY	0.980
New Haven Harbor, CT	0.767
Little Narragansett Bay, CT and RI	0.979
Housatonic River, MA and CT	0.880
Thames River, CT	1.000

T . I. I. I. A.		LIDYL CLASS			
I able H-4.	Salinity-Base	a Dilution	Estimates	trom	Subtask E

^a Based on Vaudrey (2016) delineations, this larger embayment is made up of multiple smaller embayments. EPA selected the

smallest dilution factor (i.e., the lowest number), representing the greatest contribution from fresh water. ^b The Eastern Narrows boundary is the same as for the Eastern and Western Narrows (Combined). Target concentration minima are truncated at 0.200 mg/L, which was considered background for LIS, seeing as it was equivalent to the 5th percentile of the distribution analysis (see subtask F memo) and is similar to a long-term time series of eastern LIS water, which was reported as similar to concentrations in the Atlantic shelf adjacent to and exchanging with LIS (Vlahos et al. 2020). Maxima were truncated at 0.490 mg/L for seagrass and 0.600 mg/L for aquatic life use, which were considered upper acceptable levels to protect these assessment endpoints based on the literature (see subtask F memo). The average was derived from all values that met the minimum and maximum limits.

Sample Calculation

In order to improve transparency, a sample calculation using data from the Pawcatuck River is provided here. For the Pawcatuck the following values were estimated from the methods above:

Average Target Embayment TN Concentration (C_T) (mg/L): 0.343

Existing Embayment TN Concentration (C_e) (mg/L): 0.550

Boundary Condition Concentration (*C*_{L/S}) (mg/L): 0.213

Dilution (D): 0.995

Then, substituting these into equation 12, one gets the percent reduction solution:

$$\frac{(C_e - C_T)}{\left\{C_e - \left[C_{LIS} \times \left(\frac{S_e}{S_{LIS}}\right)\right]\right\}} = \frac{(0.550 - 0.343)}{\{0.550 - [0.213 \times (0.995)]\}} = \frac{(0.207)}{\{0.550 - [212]\}} = \frac{(0.207)}{\{0.338\}} = 61.2\%$$

Results

This section provides the values for each parameter in Equation 11 and the resulting percent reductions for each waterbody associated with the mean, minimum, and maximum target concentration. Also shown are percent reductions where the boundary concentration is reduced as well (e.g., as a result of other nitrogen reductions to LIS). Estimates of percent reductions for embayments ranged from 18% to 96%. The average reduction was 67%.

Suffolk County, NY, developed a <u>Subwatersheds Wastewater Plan</u> in 2020, subsequently approved by NYSDEC as a Nine Element (9E) Watershed Plan. The 9E Plan, which increases priority for additional state and federal funding, comprehensively looks at nitrogen pollution in Suffolk County, including embayments in LIS. For the plan, Suffolk County modeled nitrogen loads from wastewater, fertilizer, and atmospheric deposition at the parcel level to the groundwater. Using the model's data, load reduction goals have been developed for all Suffolk County waterbodies. The plan's recommendations will allow Suffolk County to target priority areas for reducing nitrogen coming from wastewater. In April 2021, EPA approved the 9E Plan as an *Alternative Restoration Plan* for the eight waters that are on New York's Section 303(d) list and identified as impaired due to nitrogen.

This effort was done in parallel with EPA's work, highlighting the importance of determining necessary nitrogen reductions. The two approaches slightly differed and resulting recommended nitrogen load reduction goals vary in some cases. The results of this soundwide evaluation do not supplant the Suffolk County reduction goals, but offer independent verification that the need for reductions in nitrogen pollution identified by Suffolk County are scientifically defensible.

H.1 Pawcatuck River, RI and CT

Figure H-4 shows a map of the Pawcatuck River watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

Figure H-4. Pawcatuck River Watershed, RI and CT

Table H-5 provides estimated TN reduction levels for the Pawcatuck River watershed.

Table H-5. Estimated TN	Reduction Levels	for Pawcatuck Rive	Watershed. RI and CT
			matoriou, na ana o i

	Seagrass				Other Aquatic Life	
Concentration-Based Value		Stressor- Response Literature Distribution		Literature Distribution Liter		Distribution
Target Concentrations (<i>C</i> ₇) (mg/L)	0.180	0.740	0.400	0.280	0.410	0.280
Embayment Concentration (<i>C_e</i>) (mg/L)				0.550		
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)		0.213				
Dilution (D)	0.995					
Target Concentrations $(C_T)^a$	Avg ^a Min ^a		Max ^a			
(mg/L)	0.3	43	0.5	200	0.490	
Percent Reduction at Existing Boundary Condition ^b	61% 103%			61% 103% 18%		8%
Percent Reduction ^b if Boundary Re	educed to:					
0.200 mg/L	59	%	10	0%	1	7%
0.250 mg/L			•		•	
0.300 mg/L	Current Boundary Below These Values					
0.350 mg/L						

Notes: mg/L = milligrams per liter

^a Target concentration minimum (min) is truncated at 0.200 mg/L, which was considered background for LIS. Maxima (max) were truncated at 0.490 mg/L for seagrass and 0.600 mg/L for aquatic life, which were considered upper acceptable levels to protect these assessment endpoints based on the literature (see subtask F memo). The average (avg) was derived from all values that met the minimum and maximum limits.

^b Mathematically unrealistic reduction calculations are indicated in one of three ways in tables H-5 to H-32:

(1) Percent reductions greater than 100% occur when the contribution from the boundary ($\{C_{LIS} \times (S_e/S_{LIS})\}$), the right side of the denominator in equation 12, exceeds the target (C_T), the right side of the numerator in equation 12, are shown in gray text.

(2) When the target concentration is greater than the embayment concentration, the percent reduction is shown as $C_7 > C_e$. (3) When the contribution from the boundary ({CLIS×(Se/SLIS)}), the right side of the denominator in equation 12, is greater than the existing embayment concentration (C_e), the left side of the denominator in equation 12, the denominator is negative and the percent reduction is impractically negative. This is shown as { C_{LIS} ×(S_e/S_{LIS})}> C_e .

H.2 Stonington Harbor, CT

Figure H-5 shows a map of the Stonington Harbor watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

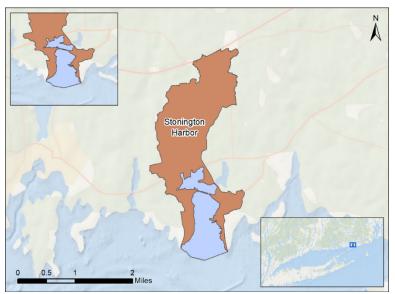


Figure H-5. Stonington Harbor Watershed, CT

Table H-6 provides estimated TN reductions levels for the Stonington Harbor watershed.

Table H-6. Estimated TN	Reduction Lev	els for Stonington	Harbor Watershed, CT
		olo loi otollingtoll	nanoon matoronoa, or

	Seagrass				Other Aquatic Life	
Concentration-Based Value	Stres Resp		Literature	Literature Distribution		Distribution
Target Concentrations (<i>C</i> ₇) (mg/L)	0.360	1.19	0.400	0.280	0.410	0.280
Embayment Concentration (<i>C</i> _e) (mg/L)				0.320		
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)		0.220				
Dilution (D)	0.966					
Target Concentrations (<i>C</i> ₇) ^a	Avg ^a Min ^a			Max ^a		
(mg/L)	0.3	46	0.1	280	0.490	
Percent Reduction at Existing Boundary Condition ^b	Ст>С _е 38% Ст>С _е				r>Ce	
Percent Reduction ^b if Boundary Re	duced to:					
0.200 mg/L	C ₇ >	Ce	33	2%	C	r>Ce
0.250 mg/L						
0.300 mg/L	Current Boundary Below These Values					
0.350 mg/L						

H.3 Saugatuck Estuary, CT²

Figure H-6 shows a map of the Saugatuck Estuary watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

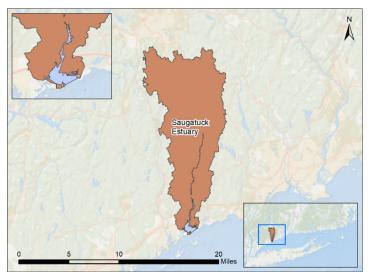


Figure H-6. Saugatuck Estuary Watershed, CT

Table H-7 provides estimated TN reductions levels for the Saugatuck Estuary watershed.

		:	Seagrass	Other Aquatic Life				
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution		
Target Concentrations (<i>C</i> ₇) (mg/L)	0.170	0.630	0.400	0.280	0.410	0.280		
Embayment Concentration (<i>C_e</i>) (mg/L)				0.573				
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.334							
Dilution (D)	0.951							
Target Concentrations $(C_{T})^{a}$	Avg ^a		Min ^a		Max ^a			
(mg/L)	0.3	43	0.200		0.490			
Percent Reduction at Existing Boundary Condition ^b	90%		146%		32%			
Percent Reduction ^b if Boundary Re	educed to:							
0.200 mg/L	60	%	97%		22%			
0.250 mg/L	69%		111%		25%			
0.300 mg/L	80%		130%		29%			
0.350 mg/L	Current Boundary Below These Values							

Table H-7. Estimated TN Reduction Levels for Saugatuck Estuary Watershed, CT

² Includes two Vaudrey et al. (2016) embayments: Saugatuck River, CT, and Saugatuck River, North, CT (freshwater).

H.4 Norwalk Harbor, CT

Figure H-7 shows a map of the Norwalk Harbor watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

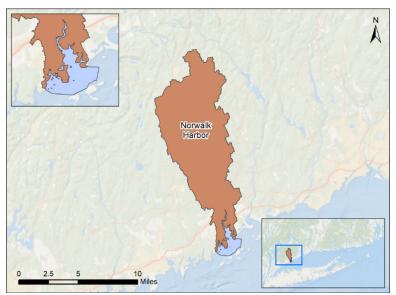


Figure H-7. Norwalk Harbor Watershed, CT

Table H-8 provides estimated TN reductions levels for the Norwalk Harbor watershed.

		:	Other Aquatic Life				
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution	
Target Concentrations (C_T) (mg/L)	0.270	0.740	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C_e</i>) (mg/L)	0.461						
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.314						
Dilution (D)	0.957						
Target Concentrations $(C_{\tau})^{a}$	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.3	28	0.270		0.490		
Percent Reduction at Existing Boundary Condition ^b	83%		119%		C _T >C _e		
Percent Reduction ^b if Boundary Re	educed to:						
0.200 mg/L	49	%	71%		C _T >C _e		
0.250 mg/L	60%		86%		C _T >C _e		
0.300 mg/L	77%		110%		C⊤>Ce		
0.350 mg/L	Current Boundary Below These Values						

H.5 Mystic Harbor, CT

Figure H-8 shows a map of the Mystic Harbor watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

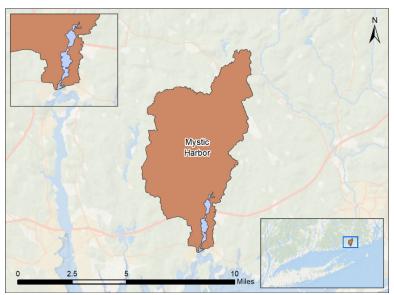


Figure H-8. Mystic Harbor Watershed, CT

Table H-9 provides estimated TN reductions levels for the Mystic Harbor watershed.

Table H-9. Estimated TN Reduction Levels for Mystic Harbor Watershed, CT

		:	Seagrass	Other Aquatic Life			
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution	
Target Concentrations (<i>C</i> ₇) (mg/L)	0.230	0.650	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C</i> _e) (mg/L)	0.562						
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.206						
Dilution (D)	0.997						
Target Concentrations $(C_{T})^{a}$	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.3	20	0.230		0.490		
Percent Reduction at Existing Boundary Condition ^b	68	%	9:	3%	20%		
Percent Reduction ^b if Boundary Re	duced to:						
0.200 mg/L	67% 92% 20%					0%	
0.250 mg/L	· · · · · · · · · · · · · · · · · · ·						
0.300 mg/L	Current Boundary Below These Values						
0.350 mg/L	1						

H.6 Niantic Bay, CT³

Figure H-9 shows a map of the Niantic Bay watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

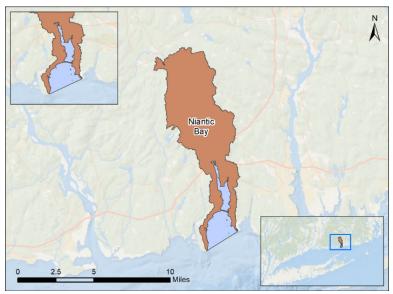


Figure H-9. Niantic Bay Watershed, CT

Table H-10 provides estimated TN reductions levels for the Niantic Bay watershed.

 Table H-10. Estimated TN Reduction Levels for Niantic Bay Watershed, CT

	:	Seagrass	Other Aquatic Life				
Stressor- Response		Literature	Distribution	Literature	Distribution		
0.270	0.840	0.400	0.280	0.410	0.280		
0.268							
0.193							
0.940							
Avg ^a		Min ^a		Max ^a			
0.3	28	0.270		0.490			
C⊤>	·C _e	C1	⇒Ce	C ₇ >C _e			
educed to:							
Current Boundary Below These Values							
							Resp 0.270 Av 0.3

See page H-13 (Table H-5) for footnote descriptions.

³ Includes two Vaudrey et al. (2016) embayments: Niantic River, CT, and Niantic Bay, CT.

H.7 Farm River, CT

Figure H-10 shows a map of the Farm River watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

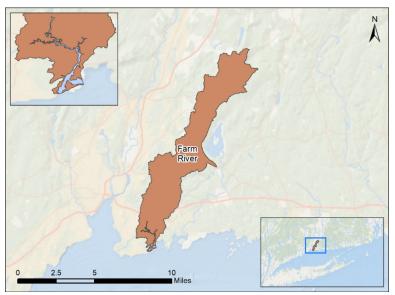


Figure H-10. Farm River Watershed, CT

Table H-11 provides estimated TN reductions levels for the Farm River watershed.

Table H-11. Estimated TN Reduction Levels for Farm River Watershed, CT

		:	Seagrass	Other A	quatic Life		
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution	
Target Concentrations (<i>C</i> ₇) (mg/L)	0.270	0.740	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C</i> _e) (mg/L)	0.461						
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.225						
Dilution (D)	0.982						
Target Concentrations (<i>C</i> ₇) ^a	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.3	28	0.270		0.490		
Percent Reduction at Existing Boundary Condition ^b	55% 79%			C ₇ >C _e			
Percent Reduction ^b if Boundary Re	educed to:						
0.200 mg/L	50% 72%				C ₇ >C _e		
0.250 mg/L							
0.300 mg/L	Current Boundary Below These Values						
0.350 mg/L							

H.8 Southport Harbor/Sasco Brook, CT⁴

Figure H-11 shows a map of the Southport Harbor/Sasco Brook watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

Figure H-11. Southport Harbor/Sasco Brook Watershed, CT

Table H-12 provides estimated TN reductions levels for the Southport Harbor/Sasco Brook watershed.

			Seagrass	Other Aquatic Life			
Concentration-Based Value		Stressor- Response		Distribution	Literature	Distribution	
Target Concentrations (<i>C</i> τ) (mg/L)	0.270	0.740	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C_e</i>) (mg/L)		0.461					
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)		0.307					
Dilution (D)	0.982						
Target Concentrations $(C_7)^a$	Av	Avg ^a		Min ^a		Max ^a	
(mg/L)	0.3	28	0.270		0.490		
Percent Reduction at Existing Boundary Condition ^b	83	83%		119%		⊺>Ce	
Percent Reduction ^b if Boundary R	educed to:						
0.200 mg/L	50	%	72%		C _T >C _e		
0.250 mg/L	62	62%		89%		⊤>Ce	
0.300 mg/L	80	80% 115%			С	т>Сe	
0.350 mg/L	Current Boundary Below These Values						

See page H-13 (Table H-5) for footnote descriptions.

⁴ Includes two Vaudrey et al. (2016) embayments: Mill River, CT, and Sasco Brook, CT.

H.9 Northport-Centerport Harbor Complex, NY⁵

Figure H-12 shows a map of the Northport-Centerport Harbor Complex watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

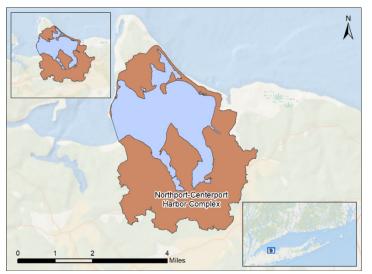


Figure H-12. Northport-Centerport Harbor Complex Watershed, NY

Table H-13 provides estimated TN reductions levels for the Northport-Centerport Harbor Complex watershed.

		:	Other Aquatic Life			
Concentration-Based Value	Stres Resp		Literature	Distribution	Literature	Distribution
Target Concentrations (<i>C</i> ₇) (mg/L)	0.160	0.600	0.400	0.280	0.410	0.280
Embayment Concentration (<i>C_e</i>) (mg/L)	0.350					
Boundary Condition Concentration (<i>C</i> _{LIS}) (mg/L)	0.349					
Dilution (D)	0.976					
			-			
Target Concentrations $(C_7)^a$	Avg ^a		Min ^a		Max ^a	
(mg/L)	0.3	43	0.200		0.490	
Percent Reduction at Existing Boundary Condition ^b	86%		1654%		C _T >C _e	
Percent Reduction ^b if Boundary Re	duced to:					
0.200 mg/L	5%		97%		C _T >C _e	
0.250 mg/L	7%		142%		C _T >C _e	
0.300 mg/L	14%		262%		CT>Ce	
0.350 mg/L	Current Boundary Below These Values					

⁵ Includes three Vaudrey et al. (2016) embayments: Centerport Harbor; Northport Bay; and Northport Harbor, NY.

H.10 Port Jefferson Harbor, NY

Figure H-13 shows a map of the Port Jefferson Harbor watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

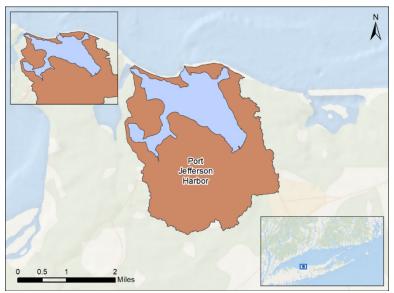


Figure H-13. Port Jefferson Harbor Watershed, NY

Table H-14 provides estimated TN reductions levels for the Port Jefferson Harbor watershed.

		;	Other Aquatic Life				
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution	
Target Concentrations (<i>C</i> ₇) (mg/L)	0.230	0.910	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C</i> _e) (mg/L)				0.273			
Boundary Condition Concentration (<i>CLIS</i>) (mg/L)	0.371						
Dilution (D)	0.985						
Target Concentrations (C7) ^a	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.3	20	0.230		0.490		
Percent Reduction at Existing Boundary Condition ^b	C _T >C _e		{C _{LIS} ×(Se/S _{LIS})}>Ce		C _T >C _e		
Percent Reduction ^b if Boundary Re	duced to:						
0.200 mg/L	C _T >C _e		56%		C _T >C _e		
0.250 mg/L	C7>Ce		162%		C	⊺>Ce	
0.300 mg/L	C ₇ >C _e		$\{C_{LIS} \times (S_e / S_{LIS})\} > C_e$		C	⊺>Ce	
0.350 mg/L	C ₇ >	Ce	$\{C_{LIS} \times (S_e / S_{LIS})\} > C_e$		C _T >C _e		

H.11 Nissequogue River, NY

Figure H-14 shows a map of the Nissequogue River watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

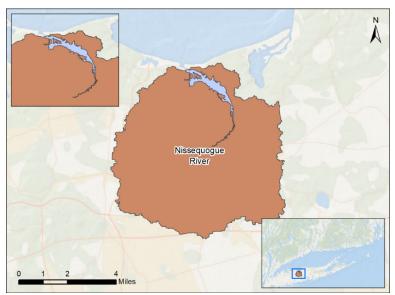


Figure H-14. Nissequogue River Watershed, NY

Table H-15 provides estimated TN reductions levels for the Nissequogue River watershed.

Table H-15. Estimated TN Reduction Levels f	for Nissequoque River Watershed, NY
Table II-10. Estimated IN Reduction Ecvels I	

		Seagrass				quatic Life	
Concentration-Based Value	Stres Resp		Literature	Distribution	Literature	Distribution	
Target Concentrations (<i>C</i> ₇) (mg/L)	0.300	1.110	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C_e</i>) (mg/L)				0.488			
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)		0.332					
Dilution (D)				0.989			
	1						
Target Concentrations $(C_T)^a$	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.3	34	0.280		0.490		
Percent Reduction at Existing Boundary Condition ^b	96	96% 130%			96% 130% C7>Ce		⊺>Ce
Percent Reduction ^b if Boundary Re	educed to:						
0.200 mg/L	53	53% 72%				_T >C _e	
0.250 mg/L	64%		86%		C ₇ >C _e		
0.300 mg/L	80	80% 109%		9%	С	⊤>Ce	
0.350 mg/L	Current Boundary Below These Values						

H.12 Stony Brook Harbor, NY

Figure H-15 shows a map of the Stony Brook Harbor watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

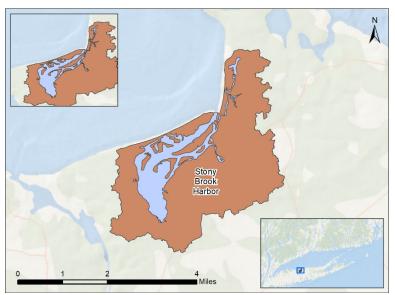


Figure H-15. Stony Brook Harbor Watershed, NY

Table H-16 provides estimated TN reductions levels for the Stony Brook Harbor watershed.

Table H-16. Estimated TN Reduction	Levels for Stony Br	ook Harbor Watershed NY
Table n=10. Estimated in Reduction	Levels for Storry Br	OUR Harbor watersheu, NT

		:	Other Aquatic Life				
Concentration-Based Value	Stressor- Response		Literature	Literature Distribution		Distribution	
Target Concentrations (C <i>⊤</i>) (mg/L)	0.210	0.920	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C</i> _e) (mg/L)				0.284			
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.352						
Dilution (D)	0.992						
			1		1		
Target Concentrations (Cr) ^a	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.316		0.210		0.490		
Percent Reduction at Existing Boundary Condition ^b	$C_T > C_e$ { $C_{LIS} \times (S_e / S_{LIS})$ }> C_e				(Se/SLIS)}>Ce CT>Ce		
Percent Reduction ^b if Boundary Re	duced to:						
0.200 mg/L	C ₇ >	Ce	8	6%	C _T >C _e		
0.250 mg/L	C _T >C _e		204%		C	_T >C _e	
0.300 mg/L	C ₇ >	Ce	{C _{LIS} ×(Se	e/S _{LIS})}>Ce	C	_T >C _e	
0.350 mg/L	C ₇ >	Ce	$\{C_{LIS} \times (S_e/S_{LIS})\} > C_e$		C	_T >C _e	

H.13 Mt. Sinai Harbor, NY

Figure H-16 shows a map of the Mt. Sinai Harbor watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

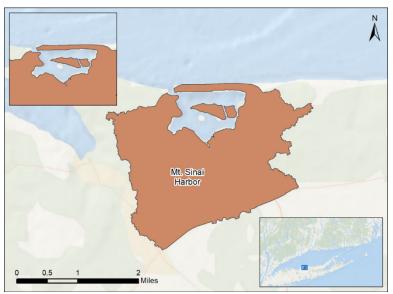


Figure H-16. Mt. Sinai Harbor Watershed, NY

Table H-17 provides estimated TN reductions levels for the Mt. Sinai Harbor watershed.

Table H-17. Estimated TN Reduction Levels for Mt. Sinai Harbor Watershed, NY

		Seagrass				Other Aquatic Life	
Concentration-Based Value	Stres Resp		Literature	Literature Distribution		Distribution	
Target Concentrations (C <i>⊤</i>) (mg/L)	0.270	0.950	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C</i> _e) (mg/L)				0.319			
Boundary Condition Concentration (<i>C</i> _{LIS}) (mg/L)	0.389						
Dilution (D)	0.992						
			1		1		
Target Concentrations (Cr) ^a	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.328		0.270		0.490		
Percent Reduction at Existing Boundary Condition ^b	$C_T > C_e$ { $C_{LIS} \times (S_e/S_{LIS})$ }> C_e				$C_{LIS} \times (S_e / S_{LIS}) > C_e$ $C_T > C_e$		
Percent Reduction ^b if Boundary Re	educed to:						
0.200 mg/L	C ₇ >	C _T >C _e 40%		C	_T >C _e		
0.250 mg/L	C _T >C _e		69%		C _T >C _e		
0.300 mg/L	C ₇ >	Ст>Се 232		32%	C	⊤>Ce	
0.350 mg/L	C ₇ >	Ce	$\{C_{LIS} \times (S_e / S_{LIS})\} > C_e$		C _T >C _e		

H.14 Eastern and Western Narrows (Combined), CT and NY

Figure H-17 shows a map of the Eastern and Western Narrows (combined) watersheds. Water quality data used for analyzing the watersheds are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

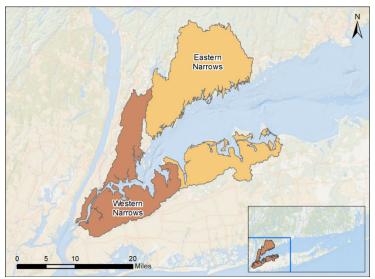


Figure H-17. Eastern and Western Narrows (Combined) Watersheds, CT and NY

Table H-18 provides estimated TN reductions levels for the Eastern and Western Narrows (combined) watersheds.

Table H-18. Estimated TN Reduction Levels for Eastern and Western Narrows (Combined) Watersheds, CT and NY

		Seagrass	Other Aquatic Life			
Concentration-Based Value	Stressor- Response	Literature	Distribution	Literature	Distribution	
Target Concentrations (<i>C</i> ₇) (mg/L)				0.410	0.240	
Embayment Concentration (<i>C_e</i>) (mg/L)			0.674			
Boundary Condition Concentration (<i>C_{LIS}</i>) (mg/L)	0.308					
Dilution (D)			1.000			
		I				
Target Concentrations $(C_{T})^{a}$	Avg ^a	Avg ^a Min ^a		Max ^a		
(mg/L)	0.325	0.410				
Percent Reduction at Existing Boundary Condition ^b	95% 119% 72%					
Percent Reduction ^b if Boundary Re	educed to:					
0.200 mg/L	74%	9	2%	5	6%	
0.250 mg/L	82%	10)2%	62%		
0.300 mg/L	93% 116% 71%					
0.350 mg/L	Current Boundary Below These Values					

H.15 Connecticut River, CT

Figure H-18 shows a map of the Connecticut River area of influence. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

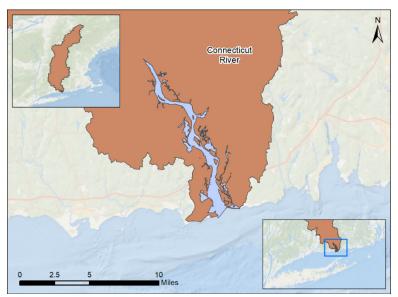


Figure H-18. Connecticut River, CT, Area of Influence

Table H-19 provides estimated TN reductions levels for the Connecticut River area of influence.

THE HAD THE TABLE AND A TR	LIDE ALL SPECIAL CONTRACTOR	CONTRACT OF A	OT A STATE
Table H-19. Estimated TM	Reduction Levels	s for Connecticut River,	CI, Area of Influence

		:	Other Aquatic Life					
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution		
Target Concentrations (<i>C</i> ₇) (mg/L)	0.160	0.730	0.400	0.280	0.410	0.280		
Embayment Concentration (<i>C_e</i>) (mg/L)				0.485				
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.218							
Dilution (D)	0.240							
Target Concentrations $(C_{T})^{a}$	Avg ^a		Min ^a		Max ^a			
(mg/L)	0.3	43	0.200		0.490			
Percent Reduction at Existing Boundary Condition ^b	33	33% 66%				33% 66% C ₇ >C _e		<i>⊺</i> >C _e
Percent Reduction ^b if Boundary Re	educed to:							
0.200 mg/L	33% 65%				C _T >C _e			
0.250 mg/L								
0.300 mg/L	Current Boundary Below These Values							
0.350 mg/L								

H.16 Mamaroneck River, NY

Figure H-19 shows a map of the Mamaroneck River watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

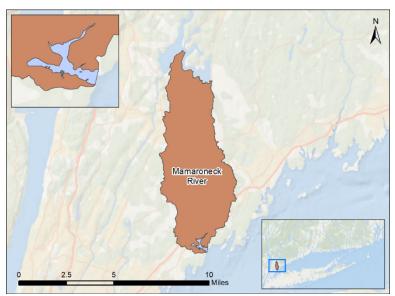


Figure H-19. Mamaroneck River Watershed, NY

Table H-20 provides estimated TN reduction levels for the Mamaroneck River watershed.

Table H-20. Estimated TN	Reduction Levels	for Mamaroneck F	River Watershed, NY
			the material and the second se

			Seagrass		Other A	quatic Life	
Concentration-Based Value	Stres Resp		Literature	Distribution	Literature	Distribution	
Target Concentrations (<i>C</i> ₇) (mg/L)	0.240	0.770	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C_e</i>) (mg/L)				0.746			
Boundary Condition Concentration (<i>C</i> _{LIS}) (mg/L)		0.504					
Dilution (D)				0.908			
Target Concentrations (C7) ^a	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.3	0.322		0.240		0.490	
Percent Reduction at Existing Boundary Condition ^b	147	147% 175%			89%		
Percent Reduction ^b if Boundary R	educed to:						
0.200 mg/L	75	75% 90%			4	5%	
0.250 mg/L	82	82%		97%		9%	
0.300 mg/L	90	90%		107%		4%	
0.350 mg/L	99	%	118%		60%		

H.17 Hempstead Harbor, NY

Figure H-20 shows a map of the Hempstead Harbor watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

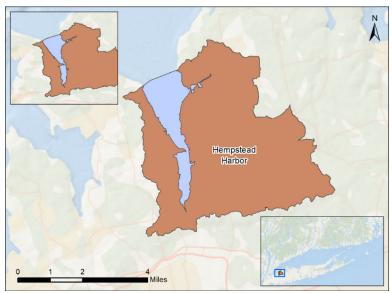


Figure H-20. Hempstead Harbor Watershed, NY

Table H-21 provides estimated TN reduction levels for the Hempstead Harbor watershed.

Table H-21. Estimated TN Reduction Levels for Hempstead Harbor Watershed, NY

		:	Seagrass		Other Aquatic Life	
Concentration-Based Value	Stres Resp		Literature	Distribution	Literature	Distribution
Target Concentrations (<i>C</i> ₇) (mg/L)	0.190	0.590	0.400	0.280	0.410	0.280
Embayment Concentration (<i>C_e</i>) (mg/L)				0.632		
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.551					
Dilution (D)				0.985		
Target Concentrations $(C_{T})^{a}$	Avg ^a		Min ^a		Max ^a	
(mg/L)	0.3	0.343 0.200			0.490	
Percent Reduction at Existing Boundary Condition ^b	324% 484%				324% 484% 159%	
Percent Reduction ^b if Boundary Re	educed to:					
0.200 mg/L	67	67% 99%			33%	
0.250 mg/L	75%		112%		37%	
0.300 mg/L	86%		128%		42%	
0.350 mg/L	101	%	150%		49%	

H.18 Areas Adjacent to the Northport–Centerport Harbor Complex, NY

Figure H-21 shows a map of the Areas Adjacent to Northport–Centerport Harbor Complex watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data.*

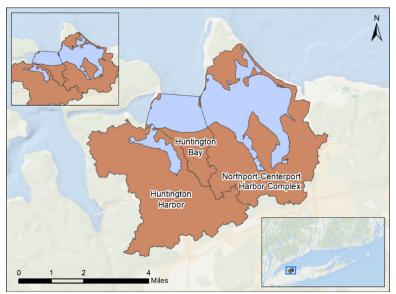


Figure H-21. Areas Adjacent to the Northport–Centerport Harbor Complex Watershed, NY

Table H-22 to Table H-24 provide estimated TN reduction levels for the Areas Adjacent to the Northport–Centerport Harbor Complex watershed.

Table H-22. Estimated	TN Poduction L	wals for the H	luntington Bay	Watershed NV
I able n-22. Estimateu	IN Reduction Le		iunungion day	vvalersneu, iv i

	:	Other Aquatic Life				
		Literature	Distribution	Literature	Distribution	
0.270	0.840	0.400	0.280	0.410	0.280	
0.268						
0.347						
0.991						
Avg ^a		Min ^a		Max ^a		
0.3	28	0.270		0.490		
C _T >C _e C _T >C _e			⇒Ce	C _T >C _e		
educed to:						
C ₇ >C _e		C _T >C _e		C _T >C _e		
C _T >C _e		C⊺>Ce		C ₇ >C _e		
C7>	·C _e	C _T >C _e		C _T >C _e		
C7>	·C _e	C _T >C _e		C⊤>Ce		
	Resp. 0.270	Stressor- Response 0.270 0.840 0.270 0.840 0.328 $C_7 > C_e$ cduced to: $C_7 > C_e$	Response Literature 0.270 0.840 0.400 Avg^a 0.400 Avg^a 0.328 0.328 0.000 $C_7 > C_e$ C_7 educed to: $C_7 > C_e$ C_7 $C_7 > C_e$ C_7 $C_7 > C_e$ C_7	Stressor- ResponseLiteratureDistribution 0.270 0.840 0.400 0.280 0.268 0.268 0.347 0.347 0.991 0.347 0.991 Mina 0.328 0.270 $C_{T}>C_e$	Stressor- ResponseLiteratureDistributionLiterature 0.270 0.840 0.400 0.280 0.410 0.268 0.268 0.347 0.347 0.991 0.991 0.328 0.270 0.991 Avga Mina Mina Mina Mina Mina Mina Mina Min	

		Other Aquatic Life						
Concentration-Based Value	Stressor- Response	Literature	Distribution	Literature	Distribution			
Target Concentrations (C_T) (mg/L)	0.540	0.400	0.280	0.410	0.280			
Embayment Concentration (<i>C_e</i>) (mg/L)		0.408						
Boundary Condition Concentration (<i>CLIS</i>) (mg/L)	0.365							
Dilution (D)	0.991							
Target Concentrations $(C_T)^a$	Avg ^a	Max ^a						
(mg/L)	0.343	0.	280	0.490				
Percent Reduction at Existing Boundary Condition ^b	142%	C _T >C _e						
Percent Reduction ^b if Boundary Re	duced to:							
0.200 mg/L	31%	6	1%	C	⊤>Ce			
0.250 mg/L	41% 80%		C	⊤>Ce				
0.300 mg/L	59% 116% C				_T >C _e			
0.350 mg/L	107%	20)9%	C	_T >C _e			

Table H-23. Estimated TN Reduction Levels for the Huntington Harbor Watershed, NY

See page H-13 (Table H-5) for footnote descriptions. Page H-11 provides background about <u>Suffolk County's parallel effort</u> to determine load reduction goals.

	Seagrass				Other Aquatic Life		
Concentration-Based Value	Stres Resp		Literature	Distribution	Literature	Distribution	
Target Concentrations (C_T) (mg/L)	0.310	0.840	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C_e</i>) (mg/L)		0.302					
Boundary Condition Concentration (<i>C</i> _{LIS}) (mg/L)		0.364					
Dilution (D)	0.988						
Target Concentrations $(C\tau)^a$	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.3	36	0.280		0.490		
Percent Reduction at Existing Boundary Condition ^b	C⊤>	$C_T > C_e$ { $C_{LIS} \times (S_e / S_{LIS})$ }> C_e			C	⊺>Ce	
Percent Reduction ^b if Boundary Re	educed to:						
0.200 mg/L	C _T >C _e		2	1%	C	⊤>Ce	
0.250 mg/L	C _T >C _e		40%		C	⊺>Ce	
0.300 mg/L	C _T >C _e		378%		C	⊺>Ce	
0.350 mg/L	C ₇ >	·C _e	$\{C_{LIS} \times (S_e / S_{LIS})\} > C_e$		C	_T >C _e	

H.19 Oyster Bay/Cold Spring Harbor Complex, NY

Figure H-22 shows a map of the Oyster Bay/Cold Spring Harbor Complex watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

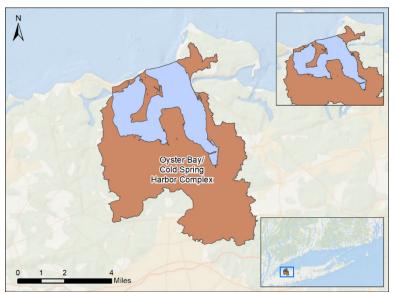


Figure H-22. Oyster Bay/Cold Spring Harbor Complex Watershed, NY

Table H-25 provides estimated TN reduction levels for the Oyster Bay/Cold Spring Harbor Complex watershed.

Table U.25. Estimated TN Deduction Lovals for O	voter Rev/Cold Spring Herber Complex Metershed NV
Table H-25. Estimated in Reduction Levels for O	yster Bay/Cold Spring Harbor Complex Watershed, NY

		:	Other A	quatic Life		
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution
Target Concentrations (<i>Cr</i>) (mg/L)	0.160	0.430	0.400	0.280	0.410	0.280
Embayment Concentration (<i>C</i> _e) (mg/L)				1.290		
Boundary Condition Concentration (<i>C</i> _{LIS}) (mg/L)		0.404				
Dilution (D)	0.965					
			-			
Target Concentrations $(C_7)^a$	Avg ^a		Min ^a		Max ^a	
(mg/L)	0.3	60	0.200		0.430	
Percent Reduction at Existing Boundary Condition ^b	103% 121%				103% 121% 96%	
Percent Reduction ^b if Boundary Re	duced to:					
0.200 mg/L	85% 99%		7	8%		
0.250 mg/L	89%		104%		82%	
0.300 mg/L	93%		109%		86%	
0.350 mg/L	98'	%	114%		90%	

H.20 Manhasset Bay, NY

Figure H-23 shows a map of the Manhasset Bay watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

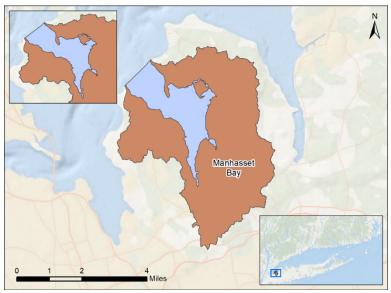


Figure H-23. Manhasset Bay Watershed, NY

Table H-26 provides estimated TN reduction levels for the Manhasset Bay watershed.

Table H-26. Estimated	TN Reduction Levels	for Manhasset Ba	v Watershed NY
Table II-20. Louinaleu		IUI Maimasset Da	y water sheu, wi

		Seagrass				Other Aquatic Life	
Concentration-Based Value		Stressor- Response		Distribution	Literature	Distribution	
Target Concentrations (<i>C</i> ₇) (mg/L)	0.170 0.590		0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C_e</i>) (mg/L)				0.782			
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)		0.672					
Dilution (D)				0.983			
Target Concentrations (C ₇) ^a	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.3	0.343		0.200		0.490	
Percent Reduction at Existing Boundary Condition ^b	360	360%		477%		239%	
Percent Reduction ^b if Boundary R	educed to:						
0.200 mg/L	75	%	99%		50%		
0.250 mg/L	82	82%		109%		4%	
0.300 mg/L	90	90%		119%		0%	
0.350 mg/L	100%		133%		67%		

H.21 Pequonnock River, CT

Figure H-24 shows a map of the Pequonnock River watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

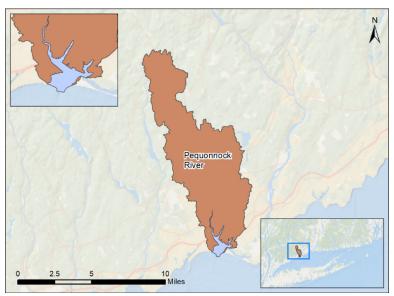


Figure H-24. Pequonnock River Watershed, CT

Table H-27 provides estimated TN reduction levels for the Pequonnock River watershed.

Table H-27. Estimated 1	N Reduction Levels	for Pequonnock I	River Watershed, CT
		ior i cquormoon i	the match shou, or

		:	Other Aquatic Life			
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution
Target Concentrations (<i>C</i> ₇) (mg/L)	0.220	0.700	0.400	0.280	0.410	0.280
Embayment Concentration (<i>C</i> _e) (mg/L)				0.349		
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.297					
Dilution (D)	0.961					
Target Concentrations (Cr) ^a	Avg ^a		Min ^a		Max ^a	
(mg/L)	0.3	18	0.220		0.490	
Percent Reduction at Existing Boundary Condition ^b	48% 203%			C	τ>Ce	
Percent Reduction ^b if Boundary Re	educed to:					
0.200 mg/L	20	%	8	2%	C _T >C _e	
0.250 mg/L	28% 119%			С	τ>C _e	
0.300 mg/L						
0.350 mg/L	Current Boundary Below These Values					

H.22 Byram River, CT and NY

Figure H-25 shows a map of the Byram River watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

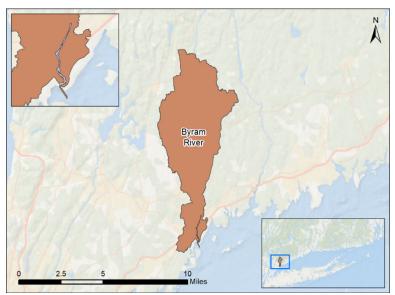


Figure H-25. Byram River Watershed, CT and NY

Table H-28 provides estimated TN reduction levels for the Byram River watershed.

		:	Other Aquatic Life				
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution	
Target Concentrations (<i>C</i> ₇) (mg/L)	0.270 0.740		0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C</i> _e) (mg/L)				0.461			
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.428						
Dilution (D)				0.980			
Target Concentrations (C_{T}) ^a	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.3	28	0.270		0.490		
Percent Reduction at Existing Boundary Condition ^b	319% 458%				319% 458% C 7>		τ>Ce
Percent Reduction ^b if Boundary Re	educed to:						
0.200 mg/L	50	%	72	2%	C	⊺>Ce	
0.250 mg/L	62%		88%		C _T >C _e		
0.300 mg/L	80%		114%		C _T >C _e		
0.350 mg/L	113	3%	162%		C ₇ >C _e		

H.23 New Haven Harbor, CT

Figure H-26 shows a map of the New Haven Harbor watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

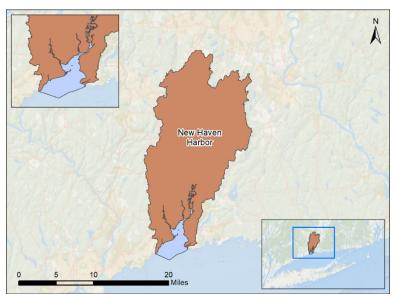


Figure H-26. New Haven Harbor Watershed, CT

Table H-29 provides estimated TN reduction levels for the New Haven Harbor watershed.

Table H-29, Es	timated TN Reduction	Levels for New Have	n Harbor Watershed, CT
		Levels for new mayer	rituibor materonica, or

			Other Aquatic Life					
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution		
Target Concentrations (<i>C</i> ₇) (mg/L)	0.200	0.660	0.400	0.280	0.410	0.280		
Embayment Concentration (<i>C</i> _e) (mg/L)	0.429							
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.233							
Dilution (D)	0.737							
Target Concentrations (Cr) ^a	Avg ^a		Min ^a		Max ^a			
(mg/L)	0.343		0.200		0.490			
Percent Reduction at Existing Boundary Condition ^b	34%		91%		C ₇ >C _e			
Percent Reduction ^b if Boundary Reduced to:								
0.200 mg/L	31%		83%		C _T >C _e			
0.250 mg/L								
0.300 mg/L	Current Boundary Below These Values							
0.350 mg/L								

H.24 Little Narragansett Bay, CT and RI

Figure H-27 shows a map of the Little Narragansett Bay watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

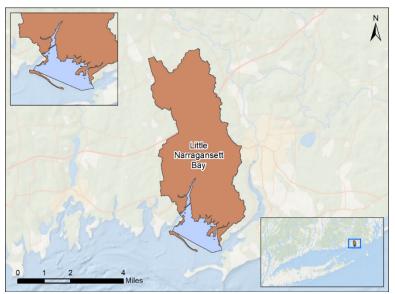


Figure H-27. Little Narragansett Bay Watershed, CT and RI

Table H-30 provides estimated TN reduction levels for the Little Narragansett Bay watershed.

			Ŧ			
			Other Aquatic Life			
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution
Target Concentrations (<i>C</i> ₇) (mg/L)	0.230	0.800	0.400	0.280	0.410	0.280
Embayment Concentration (<i>C_e</i>) (mg/L)	0.453					
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.215					
Dilution (D)	0.979					
Target Concentrations $(C_T)^a$	Avg ^a		Min ^a		Max ^a	
(mg/L)	0.320		0.230		0.490	
Percent Reduction at Existing Boundary Condition ^b	55%		92%		C _T >C _e	
Percent Reduction ^b if Boundary Re	educed to:					
0.200 mg/L	52%		87%		C _T >C _e	
0.250 mg/L						
0.300 mg/L	Current Boundary Below These Values					
0.350 mg/L						
	L					

H.25 Housatonic River, MA and CT

Figure H-28 shows a map of the Housatonic River watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

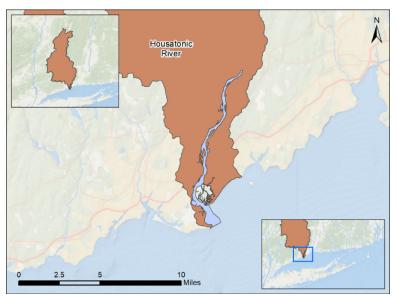


Figure H-28. Housatonic River Watershed, MA and CT

Table H-31 provides estimated TN reduction levels for the Housatonic River watershed.

		:	Other Aquatic Life				
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution	
Target Concentrations (<i>Cτ</i>) (mg/L)	0.280	0.760	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C_e</i>) (mg/L)	0.461						
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)		0.291					
Dilution (D)	0.880						
Target Concentrations $(C_T)^a$	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.330		0.280		0.490		
Percent Reduction at Existing Boundary Condition ^b	64%		88%		C ₇ >C _e		
Percent Reduction ^b if Boundary Re	educed to:						
0.200 mg/L	46%		64%		C _T >C _e		
0.250 mg/L	54%		75%		C _T >C _e		
0.300 mg/L	Current Boundary Below These Values						
0.350 mg/L							

H.26 Thames River, CT

Figure H-29 shows a map of the Thames River watershed. Water quality data used for analyzing the watershed are available in the memo for *Subtask D: Summary of Existing Water Quality Data*.

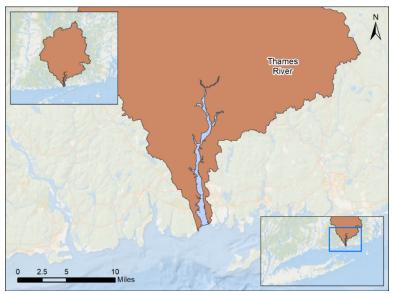


Figure H-29. Thames River Watershed, CT

Table H-32 provides estimated TN reduction levels for the Thames River watershed.

			Other Aquatic Life				
Concentration-Based Value	Stressor- Response		Literature	Distribution	Literature	Distribution	
Target Concentrations (C_{T}) (mg/L)	0.250	0.690	0.400	0.280	0.410	0.280	
Embayment Concentration (<i>C_e</i>) (mg/L)	0.461						
Boundary Condition Concentration (<i>C</i> _{L/S}) (mg/L)	0.198						
Dilution (D)	1.000			1.000			
Target Concentrations $(C_{T})^{a}$	Avg ^a		Min ^a		Max ^a		
(mg/L)	0.324		0.250		0.490		
Percent Reduction at Existing Boundary Condition ^b	52%		80%		C ₇ >C _e		
Percent Reduction ^b if Boundary Re	duced to:						
0.200 mg/L							
0.250 mg/L							
0.300 mg/L	Current Boundary Below These Values						
0.350 mg/L							

References

Ribeiro, P.J. Jr and P.J. Diggle. 2016. geoR: Analysis of Geostatistical Data. R package version 1.7-5.2.

R Core Team. 2019. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. <u>https://www.R-project.org</u>.

Vaudrey, J.M.P, C. Yarish, J.K. Kim, C. Pickerell, L. Brousseau, J. Eddings, and M. Sautkulis. 2016. *Connecticut Sea Grant Project Report: Comparative Analysis and Model Development for Determining the Susceptibility to Eutrophication of Long Island Sound Embayments*. Project number R/CE-34-CTNY. 46 p. Accessed February 2021. <u>http://longislandsoundstudy.net/wp-content/uploads/2013/08/Vaudrey R-</u> <u>CE-34-CTNY_FinalReport_2016.pdf</u>.

Vlahos, P., M.M. Whitney, C. Menniti, J.R. Mullaney, J. Morrison and Y. Jia. 2020. Nitrogen budgets of the Long Island Sound estuary. *Estuarine, Coastal and Shelf Science* 232, p.106493.